22 открытки было подписано Верой за четвертый день
Пошаговое объяснение:
По условию задания Вера подписывает на одно и то же количество открыток больше по сравнению с предыдущим днем.
Данная задача на арифметическую прогрессию. Количество дней, за которые выполнена работа – это количество членов прогрессии (n = 6), 640 открыток – это сумма всех членов прогрессии (S = 640), 10 открыток – это первый член прогрессии, т.е. а₁ = 10.
Применив формулу суммы членов арифметической прогрессии:
Sn = (2a₁ + d(n - 1)) * n
2
Мы можем найти d – разность арифметической прогрессии. Это число открыток, на которое Вера увеличивает свою норму в каждый следующий день:
640 = (2*10 + d(16 - 1)) * 16
2
640 = 20*8 + 15d * 8
640 = 160 + 120d
120d = 480
d = 480 : 120
d = 4
Т.е., каждый день Вера подписывает на 4 открытки больше, чем в предыдущий. Значит, за второй день она подписала 10 + 4 = 14 штук, за третий 14 + 4 = 18 штук, за четвертый 18 + 4 = 22 и т.д.
Количество подписанных открыток за четвертый день можно посчитать по формуле n-го члена прогрессии:
а₄= a₁ + d(4 - 1) = 10 + 4*3 = 10 + 12 = 22 (открытки) было подписано Верой за четвертый день.
если векторы ав и ас коллинеарны, то точки a, в и с лежат на одной прямой, а если не коллинеарны, то точки a, в и с не лежат на одной прямой. найдем координаты этих векторов: ав { — 8; 11; —7}, ac{24; —33; 21}.
очевидно, ас = —3ав, поэтому векторы ав и ас коллинеарны, и, следовательно, точки л, в и с лежат на одной прямой.
а) если векторы ab и ac коллинеарны, то точки а, в и с лежат на одной прямой, а если не коллинеарны, то точки а, в и с не лежат на одной прямой. вычислим коорди
Поскольку число 4х значное и самое большое предположим, что оно начинается с 9.
9 поставим на второе место 8<9,
на третье место поставим 7.
8+7+*=15+*
Ближайшее число, чтобы получилось кратное 9 - это 3.
но тогда число будет нечетным.
предположим, что на 3ьем месте число 6, тогда
8+6+*=14+*
число кратное 9 - 18.
Значит последняя цифра 4.
и число 9864.
проверка
9864:18=548