5целых 1/2 часа=11/2 ч, 3 целых 2/3 ч= 11/3 ч (так записывать решение здесь удобнее)
Если первый проезжает весь путь за 11/2 часа, то за час он проедет 1: (11/2)=2/11 пути, а за 11/3 часа до встречи — (11/3)*(2/11) = 2/3 пути.
Второй до встречи проедет 1- 2/3 = 1/3 части всего пути
Найдем отношение скоростей. До встречи первый пути, а второй Скорость пропорциональна пройденному пути
v1 :v2 = (2/3) / (1/3) = 2 — отношение скорости первого к скорости второго.
Время движения обратно пропорционально скорости.
t2 / t1 = v1 / v2
t2 :(11/2)= 2
t2 = 2*(2/11)=11
ответ: за 11 часов
Памятуя, что
Перепишем уравнение следующим образом
Теперь увидим в скобках обычную геометрическую прогрессию
Домножим числитель и знаменатель на комплексно сопряженное знаменателю число (мы можем это сделать, так как фи от 0 до пи пополам строго). В знаменателе будет чисто действительное число, поэтому уравнение можно будет упростить до
Обсудим более подробно функцию действительного параметра
Множество ее значений на комплексной плоскости - это окружность единичного радиуса, смещенная на 1 по оси действительных значений. Поэтому действительность произведения (см последнее уравнение)
Означает две вещи, либо сумма комплексных аргументов сомножителей равна πk, либо второй сомножитель равен 0 (напомним что для острых φ первый множитель не зануляется)
Рассмотрим первую ветвь поподробнее, воспользовавшись тем, что
Первая ветвь дает решения в нашей области
π/14; 2π/14; 3π/14 ... 6π/14 (6 корней)
Вторая ветвь f(27φ) = 0 имеет элементарное решение
И это дает нам корни
2π/27; 4π/27; 6π/27...12π/27 (еще 6 корней, не совпадающих с первыми)
! Итого ответ 12 корней. !
В справедливости ответа можно убедиться, построив график в любом графопостроителе. Интересный факт, корни первого семейства расположены достаточно близко к корням второго семейства (по сравнению с характерным расстоянием между парами корней) Вроде как то так)
3*50 =150(км)-проехал мотоциклист