Пошаговое объяснение:
Існу іб побудови графіка функції, що базується на аналітичному дослідженні функції.
Дослідження проводиться за такою приблизною схемою:
1) з'ясування області визначення функції;
2) вирішується питання про парності або непарності функції;
3) досліджується періодичність функції;
4) знаходять точки перетину кривої з осями координат;
5) знаходять точки розриву функції і визначають їх характер;
6) проводять дослідження на екстремум, знаходять екстремальні значення функції;
7) шукаються точки перегину та інтервали опуклості та угнутості кривій;
8) відшукання асимптоти кривій;
9) отримані результати наносять на креслення і отримують графік досліджуваної функції.
Приклад. Провести повне дослідження функції Провести повне дослідження функції та побудувати її графік.
1) Функція визначена всюди, крім точок Область визначення функції.
2) Функція непарна, тому що f(-x) = -f (x), і, отже, її графік симетричний відносно початку координат. Тому обмежимося дослідженням тільки для 0 ≤ x ≤ +∞.
3) Функція не періодична.
4) Так як y = 0 лише при x = 0, то перетин з осями координат відбувається тільки на початку координат.
5) Функція має розрив другого роду в точці точки розриву функції, причому точки розриву другого роду, . Принагідно зауважимо, що прямавертикальна асимптота – вертикальна асимптота.
6) Знаходимо Перша похідна функції і прирівнюємо її до нуля: точки екстремуму функції, звідки x1 = -3, x2 = 0, x3 = 3. На екстремум треба досліджувати тільки точку x=3 (точку x2=0 не досліджуємо, тому що вона є граничною точкою проміжку [0, +∞)).
В околиці точки x3=3 має: y’>0 при x<3 та y ’<0 при x>3, отже, в точці x3 функція має максимум, ymax(3)=-9/2.
Знайти першу похідну функції
Для перевірки правильності знаходження мінімального та максимального значення.
7) Знаходимо друга похідна функції. Бачимо, що y’’=0 лише при x = 0, при цьому y”<0 при x<0 та y”>0 при x>0, отже, в точці (0,0) крива має перегин. Іноді напрямок угнутості може змінитися при переході через розрив кривої, тому слід з'ясувати знак y" і близько точок розриву функції. У нашому випадку y”>0 на проміжку точки перегину функції i y”<0 на увігнутість і опуклість функції, отже, на крива ввігнута і опукла на як визначити увігнутість функції.
Знайти другу похідну функції
8) з'ясуємо питання про асимптоту.
Наявність вертикальної асимптоти визначення асимптоти встановлено вище. Шукаємо горизонтальні: як знайти асимптоти, отже, горизонтальних асимптот немає.
Знайдемо похилі асимптоти: похилі асимптоти, похила двостороння Асимптота, виходячи з цього, y=-x – похильна двобічна асимптота.
9) Тепер, використовуючи отримані дані, будуємо креслення:
Туралы күзде жиі: суретші-күз айтады. Небәрі үшін күзді: "перекрашивает" пейзажды несколько күн. Бұрын орман жасыл болды, бірақ күз келді және жасылды түстің және түстің көпшілігіне өзгертті. Ағаштың бас-басы тұқымы өзінің түсіне деген қаралады. Біреудің тал-шыбықтары лимонно-желтыми болады, ал біреулер - қызыл сары. Тығыз қара қоңыр-сары түске деген қарала- мынадай болатын, ол жоса аталады. Және түстер қызыл: багровый, таңқурай, темно-красный кездеседі. Қоңыр барлық сарындардың да күздің-суретшінің палитрасында қатысады. Болады және алтын түстес аталатын мынадай түс. Ғана вечнозеленые тал-шыбықтар мынадай қалады, сияқты және болды.
ответ:красной краски привезли 20 литров