М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
викся1231
викся1231
16.01.2020 16:51 •  Математика

Батпак кыркылдаганнын 1кунде 234 шыркей ал баканын 1кунде 321 шыркей жилы батпак кыркылаганын караганда 3кунде неше шыркей жилы. тышкандар коймада ар туны 3тогаш жиды 1тогаштын масасы10г.тышкандар 1аптада тогаштын кандай массасын жиды.

👇
Ответ:
кратос2315
кратос2315
16.01.2020
Что это за язык ?
я лично не понимаю\\

Очень не понятно
4,4(11 оценок)
Открыть все ответы
Ответ:
revati1
revati1
16.01.2020
Нет.

Полезное утверждение: сумма цифр даёт такой же остаток при делении на 9, что и само число.
Доказательство. Пусть число имеет вид \overline{\dots a_2a_1a_0}=10^0a_0+10^1a_1+10^2a_2+\dots. Рассмотрим разность между этим числом и суммой его цифр: 
\overline{\dots a_2a_1a_0}-(a_0+a_1+a_2+\dots)=(10^0-1)a_0+(10^1-1)a_1+\\+(10^2-1)a_2+\dots=9a_1+99a_2+999a_3+\dots
Коэффициент перед a_k равен 10^k-1 - k девяток, очевидно делится на 9. 
Если разность двух целых чисел делится на 9, то они дают одинаковые остатки при делении на 9, что и требовалось доказать.

__________________________________________

Возвращаемся к задаче. Первоначальное число давало остаток 6 при делении на 9. Тогда после первого нажатия волшебной кнопки на экране будет число, дающее такой же остаток от деления на 9, что и 2 * 6, после следующего - как и 4 * 6, и вообще, после n нажатий число будет давать такой же остаток, что и 2^n\cdot62^n \cdot 6 не делится на 9 ни при каком n, так что на экране не появится ни одного числа, делящегося на 9, в том числе и 9333 = 9 * 1037.
4,5(39 оценок)
Ответ:
АААННЯЯЯ111
АААННЯЯЯ111
16.01.2020
Нет.

Полезное утверждение: сумма цифр даёт такой же остаток при делении на 9, что и само число.
Доказательство. Пусть число имеет вид . Рассмотрим разность между этим числом и суммой его цифр: 

Коэффициент перед  равен  - k девяток, очевидно делится на 9. 
Если разность двух целых чисел делится на 9, то они дают одинаковые остатки при делении на 9, что и требовалось доказать.



Возвращаемся к задаче. Первоначальное число давало остаток 6 при делении на 9. Тогда после первого нажатия волшебной кнопки на экране будет число, дающее такой же остаток от деления на 9, что и 2 * 6, после следующего - как и 4 * 6, и вообще, после n нажатий число будет давать такой же остаток, что и .  не делится на 9 ни при каком n, так что на экране не появится ни одного числа, делящегося на 9, в том числе и 9333 = 9 * 1037.

ответ был взят у Nelle987
4,4(100 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ