Пусть на третью машину погрузили х ,тогда на первую 1,3х,а на вторую 1,5 х
х+1,3х+1,5х=13,3
3,8х=13,3
х=13,3:3,8
х= 3,5 т
3,5*1,3= 4,55 т
3,5*1,5= 5,25 т
ответ: 3,5 погрузили на третью машину,4,55 на первую и 5,25 на вторую.
4,2(0,8+y)=8,82
0,8+y = 8.82/4,2
0,8+y = 2,1
y = 2,1-0,8
y = 1,3
3/4/0,2 = 30/4 = 0,75 / 0,2 = 7,5 / 2 = 3,75
Пошаговое объяснение:
Пусть R — радиус шара.
Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.
Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .
По известной формуле площадь такой «шапочки» равна .
Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.
Обозначив количество больших граней через n, получим , то есть .
Решение заканчивается проверкой того, что .
Примечание. Легко видеть, что у куба шесть больших граней.
Поэтому приведенная в задаче оценка числа больших граней является точной.
-6x=28
-x=28/6=14/3=4 2/3
x=-4 2/3
минус четыре целых две третих