50 005 — (1 534 + 827) — 1 005 = 46 639
1) 1 534 + 827 = 2361
2) 50 005 — 2361 = 47 644
3) 47 644 - 1 005 = 46 639
706 250 — (50 000 — 2 341) + 55 559 = 714 150
1) 50 000 — 2 341 = 47 659
2) 706 250 — 47 659 = 658 591
3) 658 591 + 55 559 = 714 150
105 000 + 78 000 – (350 + 25 600) = 157 050
1) 350 + 25 600 = 25 950
2) 105 000 + 78 000 = 183 000
3) 183 000 - 25 950 = 157 050
905 340 – (45 670 — 3 007) + 50 002 = 912 679
1) 45 670 — 3 007 = 42 663
2) 905 340 – 42 663 = 862 677
3) 862 677 + 50 002 = 912 679
Пошаговое объяснение:
(1 + 2) * 3 = 9;
1 * 2 * 3 + 4 = 10;
1 - 2 + 3 + 4 + 5 = 11;
тут терпение закончилось
(1 + (2 - 3) * (4 - 5)) * 6 = 12;
- 1 + (2 * (3 - 4) * (5 - 6)) * 7 = 13;
1 * 2 * (3 + 4) + (5 - 6) - (7 - 8) = 14;
(1 * 2 + (- 3 + 4)) * 5 + (-6 + 7) + (8 - 9) = 15;
Пошаговое объяснение:
Месяц или 2 назад скачал крякнутую NeuroNative, там такие же странные задачи были, но с постепенным усложнением.
Суть в том, что ты вспоминаешь как можно было бы получить число справа, к примеру, 9 -- это три умножить на три.
Потом, смотришь, есть ли в последовательности участник получения, условно, девятки. К примеру, в последовательности 1, 2, 3 есть тройка.
Потом, смотришь, можно ли из оставшихся цифр получить других участников получения, условно, девятки. К примеру, можно ли из 1 и 2 получить тройку?
Иногда, оставались числа, которые мне были не нужны, и так как каждое следующее число больше предыдущего на 1, то на их разницу, к примеру на (-5+6), можно умножить всё остальное и тогда результат не изменится! Кроме того, из пары соседних чисел можно получить не только 1, но и -1, а если сложить 1 и -1, то получится ноль, сложение с которым тоже никак не повлияет на результат!
Такие задачи с подбором и угадыванием, очень похожи на то, чем занимаются хакеры, когда пытаются понять, куда в программу можно вставить свой код, не сломав её, или по какому адресу в памяти лежит доступ к нужной переменной, или к нужному функционалу.
Не уклоняйтесь от них :-)
-8,8х+16-3+2,6х+1,8х-12=-4,4х+1