Пошаговое объяснение:
Так как в основании квадрат, то длины его диагоналей равны, и в точке пересечения делятся пополам и образуют в точке пересечения прямой угол, то АО = ВО = СО = ДО, тогда длины наклонных МА = МВ = МС = МД.
Достаточно найти длину одной наклонной.
Рассмотрим прямоугольный треугольник СОВ, у которого гипотенуза ВС = 2 см, а катеты ВО и СО равны. Тогда, по теореме Пифагора, СВ2 = 2 * ОВ2.
ОВ2 = СВ2 / 2 = 16 / 2 = 8.
ОВ = 2 * √2 см.
Рассмотрим прямоугольный треугольник МОС, и по теореме Пифагора определим длину гипотенузы МС.
МС2 = ОС2 + ОМ2 = (2 * √2)2 + (2 * √2)2 = 8 * 8 = 16.
МС = √16 = 4 см.
МС = МА = МВ = МД = 4 см.
В треугольнике ОМС катет ОС = ОМ = 2 * √2, то треугольник равнобедренный и прямоугольный, то угол ОСМ = 450.
Углы между другими наклонными и проекциями наклонных также равны 450.
ответ: МА = МВ = МС = МД = 4 см. Углы между наклонными и их проекциями равен 450.
273 * 3 = 819 рубашек выйдет из 2730 метров ткани
ответ: 819 рубашек
2) 10 м = 3 рубашки,
10/3= 3,33(м) одна рубашка
2733/3,33=820 (р)
2737/3,33= 821 рубашка
2733+2737=5470 (м) оба полотна
5470/3,33=1642 (р)