P = (a + b) * 2 - формула периметра прямоугольника а (см) - ширина b (см) = 15а - длина Р = 19,2 (см) S = a * b - формула площади прямоугольника S = 0,6 см * 9 см = 5,4 (кв.см) - площадь прямоугольника ответ: 5,4 кв.см - площадь прямоугольника. Уравнение По Данным Сможешь Составить Сам?
Чтобы найти число, которое при делении на 13 дает остаток 5, надо прежде найти число, которое БЕЗ ОСТАТКА, т.е. нацело делится на 13. Это 13*n, где n - число натурального ряда. (отрицательные числа не рассматриваем, т.к. исходя из условия число должно быть больше 0) У нас есть два ограничения на это число: оно должно быть больше (60-5), т.е. 55 (ведь к этому числу мы должны будем прибавить остаток 5), но и меньшее 99, т.к. 99 наибольшее двухзначное число. 99 > 13*n > 55 7,6 > n > 4,2 исходя из натурального n, получим: 7 ≥ n ≥ 5 т.е. возможно: n = 5; 13*n = 65; 13*n + 5 = 70; Проверка: 70:5 = 5(ост.5) n = 6; 13*n = 78; 13*n + 5 = 83; 83:5 = 6(ост.5) n = 7; 13*n = 91; 13*n + 5 = 96: 96:5 = 7(ост.5) ответ: 70; 83; 96
Чтобы найти число, которое при делении на 13 дает остаток 5, надо прежде найти число, которое БЕЗ ОСТАТКА, т.е. нацело делится на 13. Это 13*n, где n - число натурального ряда. (отрицательные числа не рассматриваем, т.к. исходя из условия число должно быть больше 0) У нас есть два ограничения на это число: оно должно быть больше (60-5), т.е. 55 (ведь к этому числу мы должны будем прибавить остаток 5), но и меньшее 99, т.к. 99 наибольшее двухзначное число. 99 > 13*n > 55 7,6 > n > 4,2 исходя из натурального n, получим: 7 ≥ n ≥ 5 т.е. возможно: n = 5; 13*n = 65; 13*n + 5 = 70; Проверка: 70:5 = 5(ост.5) n = 6; 13*n = 78; 13*n + 5 = 83; 83:5 = 6(ост.5) n = 7; 13*n = 91; 13*n + 5 = 96: 96:5 = 7(ост.5) ответ: 70; 83; 96
а (см) - ширина b (см) = 15а - длина Р = 19,2 (см)
S = a * b - формула площади прямоугольника
S = 0,6 см * 9 см = 5,4 (кв.см) - площадь прямоугольника
ответ: 5,4 кв.см - площадь прямоугольника.
Уравнение По Данным Сможешь Составить Сам?