Р(А) – вероятность события А, m – число благоприятствующих исходов этому событию, n – число всевозможных исходов.
Значит, А - момент когда выпадет 9 очков. Тогда, Р(А) - вероятность того, что выпадет 9 очков.
Нужно найти все сочетания чисел, при которых может в сумме получиться 9: 162, 126, 216, 423, 144, 414, 441, 333, 315, 252, 225, 234, 621, 243, 342, 432, 261, 135, 315, 522, 531, 351, 513, 612, 324. Это кол-во наших вариантов, 25. Значит, m = 25.
Так как n - количество всех возможных комбинаций при выбрасе кубиков, то: n = 6×6×6 = 216
Пусть a/(b + c - 3a) = b/(a + c - 3b) = c/(a + b - 3c) = -1/k. Тогда выполняются три равенства -ka = -3a + b + c -kb = a - 3b + c -kc = a + b - 3c
(k - 3)a + b + c = 0 a + (k - 3)b + c = 0 a + b + (k - 3)c = 0
У этой системы должно быть нетривиальное решение, значит, определитель матрицы этой системы равен нулю.
(k - 1)(k - 4)^2 = 0, откуда k = 1 или k = -4
Если k = 1, то система превращается в такую: -2a + b + c = 0 a - 2b + c = 0 a + b - 2c = 0 Решив её, получаем a = b = c. В этом случае 3b/a + 3c/a + a/c + b/c = 3 + 3 + 1 + 1 = 8
Если k = 4, система принимает вид a + b + c = 0 a + b + c = 0 a + b + c = 0 Тогда 3b/a + 3c/a + a/c + b/c = 3(b + c)/a + (a + b)/c = 3 * (-a)/a + (-c)/c = -3 - 1 = -4