Действовать будем так: найдем производную функции по х и по у, приравняем их к 0, составим систему и найдем решение. Это решение будет стационарной точкой
стационарная точка - (0,4;2)
Далее необходимо определить характер этой самой точки - максимум это, или минимум. Для этого составим матрицу из вторых производных и проверим ее главные миноры. Так как у нас функция 2 переменных, то матрица будет размерности 2*2, следовательно, главные миноры - это вторая производная по хх, и определитель всей матрицы. Если определитель матрицы положительный, то экстремум существует и его характер проверяется по знаку второй производной по хх, если отрицательный, то экстремума нет.
Как видно, определитель матрицы меньше 0, поэтому глобального экстремума нет
-2х+16-5х-30=0
-7х=30-16
-7х=14
х=-2
2*(y+9)-4*(y+8)=0
2y+18-4y-32=0
-2y=32-18
-2y=14
y=-7