М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Найти-среднее арифметическое трёх чисел — 17. найди эти числа, если первое число в 2,5 раз больше третьего, а второе в 0,5 раз.

👇
Ответ:
alyaardasenova
alyaardasenova
09.06.2020

пусть х-третье число, тогда второе будет1,5х , а первое 2,5х

Х+1,5Х+2,5Х=6*3

5Х=18

Х=3,6-третье число

3,6*1,5=5,4-второе число

2,5*3,6=9-первое число 

вот так

4,7(15 оценок)
Открыть все ответы
Ответ:
Evangelins
Evangelins
09.06.2020
Обозначим за F(n) количество n-значных чисел, состоящих из двоек и пятёрок, у которых никакие две двойки не стоят рядом.
Рассмотрим F(n+2). Как можно построить (n+2)-значное число, обладающее указанным свойством? Можно взять (n+1)-значное число с таким свойством и приписать к нему пятерку (!) или взять (n+1)-значное число с таким свойством, не оканчивающееся на двойку, и приписать к нему двойку () ровно F(n). Тогда F(n+2) = F(n+1) + F(n). Так как F(1) = 2, F(2) = 3, то F(n) на самом деле (n+1)-е число Фибоначчи, тогда F(10) = 89.

Примечания.
1) Последовательность Фибоначчи задаётся соотношением
\mathcal F_0=\mathcal F_1=1;\qquad\mathcal F_{n+2}=\mathcal F_{n+1}+\mathcal F_n
Первые члены последовательности Фибоначчи (начиная с нулевого):
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, … 
2) Почему чисел со свойством (!!) ровно F(n). Понятно, что пятерку можно приписать к любому числу с заданным свойством, т.е. если X - n-значное число с нужным свойством, то 10X+5 - (n+1)-значное число с нужным свойством. И наоборот, если 10X+5 - (n+1)-значное число с нужным свойством, то X - n-значное число с нужным свойством. Поэтому число (n+1)-значных чисел с нужным свойством, оканчивающихся на 5, равно числу n-значных чисел с нужным свойством.
4,4(95 оценок)
Ответ:
97shadesofblue
97shadesofblue
09.06.2020
Можно ли из последовательности  1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7... 
выделить арифметическую прогрессию
а) длиной 4;
б) длиной 5;
в) длиной n, где n - любое натуральное число?Возьмём парочку произвольных членов последовательности и посчитаем их разность.

                              

Теперь продолжим начатую арифметическую прогрессию с найденной разностью:

                                        

Если первые два числа привести к тому же знаменателю m(m + k), то получим:

                                        

Чтобы прогрессия состояла из трёх членов данной последовательности, третья дробь
должна сократиться, и при этом в числителе должна оказаться единица, т.е. 
знаменатель m(m + k) должен поделиться на числитель (m - k).
Это произойдёт, например, при m = 2k. Получим прогрессию:

                              

Подставляя различные натуральные k, будем получать разные примеры прогрессий.

Чтобы в четвёртом члене прогрессии при сокращении оказалась единица,
знаменатель m(m + k) должен поделиться на числитель (m - 2k).
Это произойдёт, например, при m = 3k:

                                             

Потребуем теперь, чтобы сократилась пятая дробь. Возьмём m = 4k. Наша прогрессия:

                                                            

Чтобы во всех числителях оказалась единица (третья дробь подводит), возьмём k = 3:

                                                            

Присмотримся внимательно к прогрессии, найденной в самом начале решения:

                                    

Числители образуют арифметическую прогрессию, знаменатели равны. 
Возьмём в качестве знаменателя n!, а в качестве числителей 1, 2, 3,

                                  ...    
4,4(97 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ