Пусть расстояние между пунктами А и В равно S км, скорость первого (из А) х км/ч, второго - у км/ч. Первый полпути за (S/2)/x часов. За это время второй у=S*y/(2*x) км. Eму осталось пройти S-S*y/(2*x)=S*(2*x-y)/(2*x) км . S*(2*x-y)/(2*x)=24 (1). Второй полпути за (S/2)/у часов. За это время первый у)*х=S*х/(2*у) км Eму осталось пройти S-S*х/(2*у)=S*(2*у-х)/(2*у) км S*(2*у-х)/(2*у)=15 (2). Поделим почленно уравнение (1) на уравнение (2), получим (2*x-y)/(2*у-х)=1,6*х/у. Поделим числитель и знаменатель последнего уравнения на у, и обозначим х/у=a. (2*a-1)/(2-a)=1,6*a 2*a-1=3,2*a-1,6*a^2 1,6*a^2-1,2*a-1=0 8*a^2-6*a-5=0 a1=(3/8)+√(9/64+5/8)=5/4 a2=(3/8)-√9/64+5/8)=-1/2 не удов усл х/у=5/4 или у=0,8*х. Подставив это в уравнение (1) или (2) получим S=40 км. Когда первый полпути, второй км. Когда первый дойдет до пункта В, второму останется пройти до А 24-16=8 км.
Для того чтобы найти экстремум функции найдем сперва ее производную Теперь приравняем производную к нолю и решим полученное уравнение 6x(x-1)=0 6х=0 х-1=0 х=0 х=1 Нанесем полученные точки на ось Ох и определим знак функции. ОБЯЗАТЕЛЬНО НАРИСОВАТЬ. таким образом получим три промежутка 1. (-беск; 0): у(-2)=6*(-2)(-2-1)=-12*(-3)=36, >0 2. [0;1]: y(0,5)=6*0,5*(0,5-1)=3*(-0,5)-1,5 <0 3.(1;беск): y(2) 6*2(2-1)=12*(1)=12, >0 И так видим что при прохождении точек х=0 и х=1 функции меняет свой знак следовательно эти точки и являются экстремумами функции ответ:х=0 и х=1