(x+3)*|x+1|=((4-x)(x+3))/2 Решить уравнение.
Пошаговое объяснение:
(x+3)*|x+1|=((4-x)(x+3))/2 |*2
2*(x+3)*|x+1|=(4-x)(x+3)
2*(x+3)*|x+1|-(4-x)(x+3)=0
(x+3)*(2|x+1|-4+x)=0
1 случай . Если х+1>0 , х>-1, ( модуль раскроется со знаком +)
(x+3)*(2(x+1)-4+x)=0
(x+3)*(3x-2)=0 . Корни уравнения х=-3 , х= 2/3.
-3 не решение нет , т.к. -3<-1 .
2 случай . Если х+1≤0 , х≤-1, ( модуль раскроется со знаком -)
(x+3)*(-2(x+1)-4+x)=0
(x+3)*(-x-6)=0 .Корни уравнения х=-3 , х=-6 . Оба корня подходят условию х≤-1
ответ . х= -6 ,х=-3 , х= 2/3 .
a=20
b+c=50
a^2= 400
c^2=a^2+b^2
a^2=(c-b)(c+b)
50(c-b)=400
c-b=8
c+b=50
2c=58
c=29
b=21
ответ: гипотинуза равно 29, а длина другого катета равна 21