Для левой части ур-ия применим формулу суммы синусов: Sin x + Sin y = 2Sin ((x + y)/2) · Cos ((x - y)/2) А для правой части формулы понижения степени: Cos² x = (1 + Cos 2x) / 2 Sin² x = (1 - Cos 2x) / 2
То есть: 2Sin 4x · Cos x = 2 · ((1 + Cos 4x)/2 - (1 - Cos 6x)/2))
2Sin 4x · Cos x = 1 + Cos 4x - 1 + Cos 6x
2Sin 4x · Cos x = Cos 4x + Cos 6x
Для правой части ур-ия применим формулу суммы косинусов: Cos x + Cos y = 2Cos ((x + y)/2) · Cos ((x - y)/2)
2Sin 4x · Cos x = 2Cos 5x * Cos x
2Sin 4x · Cos x - 2Cos 5x * Cos x = 0
Выносим общий множитель 2Cos x: 2Cos x · (Sin 4x - Cos 5x) = 0
Отсюда: Cos x = 0 ⇒ x = ±π/2 + 2πk, k — целое
Sin 4x - Cos 5x = 0
Cos (π/2 - 4x) - Cos (5x) = 0
Применяем формулу разности косинусов: Cos x - Cos y = -2Sin ((x + y)/2) · Sin ((x - y)/2)
То есть: -2Sin ((π/2 + x)/2) · Sin ((π/2 - 9x)/2) = 0
1) Sin ((π/2 + x)/2) = 0 (π/2 + x)/2 = πk π/2 + x = 2πk x = -π/2 + 2πk
Сперва делаем то что в скобке 9 10 и 2 15 ищем нименьий общий множитель это будет 30 и 30 делим на оба числителя 9 и 2 будет 8 плюс 6 и то получится двадцать четыре тридцатых и его можно сократить на 3 будет три десятых и три десятых сократим мы на 2 и того получится четыре пятых и след действие четыре пятых умножить на 15 и того 5 и 15 можно сократить на 5 вместо 15 у нас будет 3 а в знаменателе ничего не останется и 4 умножить на 3 будет 12 и того 12 умножить на 32 третьих и дальше идет сокращение и вместо 12 будет 4 и того 4 умножить на 32 будет 128 вот вам и ответ
100% – х
х=(100•11)/11=100
25% — 90
100% – х
х=(100•90)/25=360
13% — 39
100% – х
х=(100•39)/13=300
75% — 20
100% – х
х=(100•20)/75=80/3=26 2/3