М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SledjeTV
SledjeTV
09.09.2020 04:42 •  Математика

Скажите пож. сколько 250 центнерах килограмм?

👇
Ответ:
simono627122va
simono627122va
09.09.2020
ответ: 25000 кг.
250*100
4,7(34 оценок)
Ответ:
magmet103p02l67
magmet103p02l67
09.09.2020
1 центнер = 100 килограмм
250 центнеров = 250 • 100 = 25000 килограмм
4,7(52 оценок)
Открыть все ответы
Ответ:
Artem0317q
Artem0317q
09.09.2020
Рассмотрим сначала числа со старшим разрядом единиц
(в обратном порядке):

       сумма количества цифр: 1 + 2 = 3 , количество цифр у квадрата числа вдвое больше количества цифр исходного числа.

       искомая сумма: 1 + 2 = 3 , количество цифр у квадрата числа всё так же вдвое больше количества цифр исходного.

       искомая сумма: 1 + 1 = 2 , количество цифр у квадрата равно количеству цифр исходного.

       искомая сумма: 1 + 1 = 2 , количество у квадрата равно количеству цифр исходного.

Теперь переходим к старшему разряду десятков
(в обратном порядке):

       сумма: 2 + 4 = 6 , количество цифр у квадрата вдвое больше количества цифр исходного.

       сумма: 2 + 4 = 6 , цифр у квадрата всё так же вдвое больше количества цифр исходного.

       сумма: 2 + 3 = 5 , цифр у квадрата числа: 3 = 4–1 .

       сумма: 2 + 3 = 5 , цифр у квадрата: 3 = 4–1 .

Далее переходим к старшему разряду сотен
(в обратном порядке):

       сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.

       сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.

       сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .

       сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .

Ну и ещё переходим к старшему разряду тысяч
(в обратном порядке):

       сумма: 4 + 8 = 12 , у квадрата вдвое больше.

       сумма: 4 + 8 = 12 , у квадрата вдвое больше.

       сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .

       сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .

А теперь всё обобщим на самый общий случай.

Если бы число записывалось единицей с R нолями, то его квадрат содержал бы уже 2R нолей, при этом в исходном числе было бы (R+1) цифр, а в квадрате числа – (2R+1) цифр.

Пусть у нас старший разряд таков, что во всём числе только R цифр, рассмотрим всё, как обычно в обратном порядке:

(  99999 : : : R цифр : : : 99999  )   –   это число на единицу меньше, чем число     (  100000 : : : R нулей : : : 00000  )     , в котором (R+1) цифр.

квадрат числа [(  99999 : : : R цифр : : : 99999  )]    –   это число, меньшее, чем число     (  100000 : : : 2R нулей : : : 00000  )     , в котором (2R+1) цифр.

Значит, квадрат числа (  99999 : : : R цифр : : : 99999  ) содержит ровно 2R цифр, а всего само число и его квадрат содержат 3R цифр.

в числе (  400000 : : : (R–1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  400000 : : : (R–1) нулей : : : 00000  )]  = 
=  (  1600000 : : : (2R–2) нулей : : : 00000  )  содержит 2R цифр, а всего само число и его квадрат содержат 3R цифр.

в числе (  300000 : : : (R–1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  300000 : : : (R–1) нулей : : : 00000  )]  =
=  (  900000 : : : (2R–2) нулей : : : 00000  )  содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.

в числе (  100000 : : : (R–1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  100000 : : : (R–1) нулей : : : 00000  )]  =
=  (  100000 : : : (2R–2) нулей : : : 00000  )  содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.

И так будет для любого R

R = 1   : : :  сумма: 3R = 3 или (3R–1) = 2 .
R = 2   : : :  сумма: 3R = 6 или (3R–1) = 5 .
R = 3   : : :  сумма: 3R = 9 или (3R–1) = 8 .
R = 4   : : :  сумма: 3R = 12 или (3R–1) = 11 .
R = 5   : : :  сумма: 3R = 15 или (3R–1) = 14 .

  . . . 

R = 32   : : :  сумма: 3R = 96 или (3R–1) = 95 .
R = 33   : : :  сумма: 3R = 99 или (3R–1) = 98 .
R = 34   : : :  сумма: 3R = 102 или (3R–1) = 101 .
R = 35   : : :  сумма: 3R = 105 или (3R–1) = 104 .

... и т.д и т.п. ...

Как легко видеть, в этой последовательности:

2, 3,  5, 6,  8, 9,  11, 12,  14, 15 95, 96,  98, 99,  101, 102,  104, 105

пропущены определённые числа. Пропущенные числа:

1, 4, 7, 10, 13, 16 94, 97, 100, 103, 106

подчиняются закону (3R+1).

В самом деле, между предыдущим и последующим значениями, кратными трём, всегда содержатся два целые числа, а искомой суммой, помимо 3R, может быть только одно из них: (3R–1) .

Поэтому, значения, подчиняющиеся закону (3R+1) не могут быть искомым результатом. Так, например, число 99 – кратно трём ( 99 = 3*33 ), а значит, число   100 = 3*33+1   никак не могло бы оказаться в расчётах Лены.

О т в е т : у Лены не могли получиться результаты, подчиняющиеся закону (3R+1) , где R – какое угодно целое число.

ну и, конечно, все результаты Лены могут быть только положительными, поскольку это количества, т.е. натуральные величины.

в частности, у неё не могло получиться число 100.
4,5(8 оценок)
Ответ:
Lokator505
Lokator505
09.09.2020
Проводим в ромбе одну из диагоналей - ту, которая не исходит из А, а которая лежит напротив. Получили два треугольника. Треугольник, содержащий угол А - равнобедренный по определению ромба. Углы при основании тогда равны (180 - 60)/2 = 60. Т.е. он даже равносторонний. Значит, проведенная нами диагональ равна 18. Далее проводим из А высоту на эту диагональ, получили два прямоугольных треугольника. В любом их них находим оставшийся катет по т. Пифагора.sqrt(18^2 - 9^2) =  9*sqrt(5). Первый катет равен 9, т.к. высота совпадает с медианой по свойству равностороннего треугольника. Считаем площадь большого треугольника = 0.5 * 18 * 9*sqrt(5) = 81*sqrt(5). Нетрудно увидеть, что второй треугольник равен первому, следовательно площадь ромба в 2 раза больше = 162*sqrt(5)
4,4(26 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ