М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Мария1111121
Мария1111121
02.09.2020 07:01 •  Математика

Цена одинаковая количество6 стоимость ?

👇
Ответ:
ymnый0
ymnый0
02.09.2020
Ну, если цена одного х, то 6х.
4,4(92 оценок)
Открыть все ответы
Ответ:
miakakashka
miakakashka
02.09.2020
Дана функция y= \frac{2 x^{2} }{3-x} .
1) Область определения: x ∈ R, x ≠ 3.
2) Область значений: y ∈ R, y ≤ -24, y > 0.
3) График функции пересекает ось X при f = 0, значит надо решить уравнение: 2x² /(- x + 3) = 0.
Решаем это уравнение. Достаточно числитель приравнять нулю.
Точки пересечения с осью Ох: х = 0.
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (2*x^2)/(3 - x).
у = (2*0^2)/(3 - x) = 0.
Точка: (0, 0).
4) Для того, чтобы найти экстремумы, нужно решить уравнение
\frac{d}{d x} f{\left (x \right )} = 0 (производная равна нулю),
и корни этого уравнения будут экстремумами данной функции.
Первая производная равна: y'=- \frac{2x^2-12x}{(x-3)^2} .
Достаточно числитель приравнять нулю: 2x² - 12x = 0.
Решаем это уравнение: 2x(x - 6) = 0.
Корни этого уравнения: х = 0  и х = 6.
Значит, экстремумы в точках: (0, 0), (6, -24).
5) Интервалы возрастания и убывания функции.
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
x =      -1       0        1         5        6               7
y' = -0,875    0       2,5      2,5       0         -0,875.
Минимум функции в точке: х = 0.
Максимум функции в точке: х = 6.
Убывает на промежутках (-∞; 0), (6; +∞).
Возрастает на промежутках (0; 3), (3; 6). Это с учётом того, что в точке
 х = 3 функция имеет разрыв.
6) Точек перегиба нет.
7) Вертикальная асимптота х = 3.
    Горизонтальных асимптот нет.
    Наклонную асимптоту можно найти, подсчитав предел функции (2*x^2)/(3 - x), делённой на x при x->+oo и x ->-oo
\lim_{x \to -\infty}\left(\frac{2 x}{- x + 3}\right) = -2.
Значит, уравнение наклонной асимптоты слева:
y = -2x - 6
\lim_{x \to \infty}\left(\frac{2 x}{- x + 3}\right) = -2.
Возьмём предел, значит, уравнение наклонной асимптоты справа:
y = -2x - 6.
8) Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
\frac{2 x^{2}}{- x + 3} = \frac{2 x^{2}}{x + 3}.
- Нет.
\frac{2 x^{2}}{- x + 3} = - \frac{2 x^{2}}{x + 3}.
- Нет, значит, функция не является ни чётной, ни нечётной. 
4,4(43 оценок)
Ответ:
Спасибо181
Спасибо181
02.09.2020
Для нахождения экстремумов надо найти производную, приравнять её нулю, решить полученное уравнение и подставить значения в функцию:
Производная: y' = 3x^2 - 9 = 3 (x^2 - 3) = 3 (x - √3) (x + √3) = 0
Производная обращается в нуль при x = √3 и x = -√3
В точке x = -√3 производная меняет знак с плюса на минус, здесь максимум.
В точке x = √3 производная меняет знак с минуса на плюс, здесь минимум.
Вычисляем значения функции в найденных точках-экстремумах:
y(-√3) = (-√3)^3 - 9(-√3) = -3√3 + 9√3 = 6√3
y(√3) = (√3)^3 - 9√3 = 3√3 - 9√3 = -6√3
4,7(33 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ