Определения:
Наибольшим общим делителем чисел a и b называется наибольшее число, на которое a и b делятся без остатка.Наименьшее общее кратное (НОК) двух целых чисел m и n есть наименьшее натуральное число, которое делится на m и n без остаткаСвойства наименьшего общего кратного:
НОК(a, b) = НОК(b, a)
НОД(a, b) = НОД(-a, b)
НОД(a, b) = НОД(|a|,|b|)
НОК(a, НОК(b, с)) = НОК(НОК(a, b), c)
Свойства наибольшего общего делителя:
НОД(a, b) = НОД(b, a)
НОД(a, b) = НОД(-a, b)
НОД(a, b) = НОД(|a|,|b|)
НОД(a, 0) = |a|
НОД(a, к • a) = |a|, при любом к ∈ Z
НОД(a, НОД(b, с)) = НОД(НОД(a, b), c)
Пусть стороны равны а.
S = (1/2)a*a = (1/2)a².
Отсюда катеты равны: а = √(2S)
Гипотенуза с равна:с = а√2 = √(4S) = 2√S.
Тогда наименьший периметр равен:
Р = 2а + с = 2√(2S) + 2√S = 2(√(2S) + √S) = 2√S(√2 + 1).