В9ч от пристани вверх и в низ по реке отошли два катера и в 12ч остановились.на каком росстоянии оказались катера друг от друга,если их скорости были 35км/ч и 37км/ч? решить двумя
1)12-9=3 ч.-были в пути катера 2) (35+37)*3=216 км- расстояние которое оба катера 2й 1) 12-9=3 часа -время пути катеров 2) 35*3=105 км один катер 3)37*3=111км второй катер 4) 105+111=216 км расстояние между катерами
1. во время сессии 24 студента группы должны сдать три зачета: по , и программированию. 20 студентов сдали зачет по , 10 – по , 5 – по программиро-ванию, 7 – по и , 3 – по и программированию, 2 – по и про-граммированию. сколько студентов сдали все три зачета? 2. : (aèb) è (ab). 3. доказать, что множество точек a= {(x, y): y = ½x½, -,– 1 £ x £ 1} несчетно. 4. нарисовать диаграмму эйлера-венна для множества (а \ в) è с. 5. эквивалентны ли множества a = {y: y = x3, 1< x < 2} и b = {y: y = 3x, 3< x < ¥}? 2. раздел «отношения. функции» вариант № 7 1. задано бинарное отношение = {< 1, 1> , < 1, 2> , < 2, 1> , < 2, 4> , < 4, 2> }. найти d(), r(), , -1. проверить, будет ли отношение рефлексивным, симметрич-ным, антисимметричным, транзитивным? 2. пример отношения рефлексивного, симметричного и транзитивного. 3. дана функция f(x) = x 2 + ,отображающая множество действительных чисел r во множество действительных чисел, r® r. является ли эта функция сюръективной, инъективной, биективной? почему? 3. раздел «графы» 1. описать граф, заданный матрицей смежности, используя как можно больше характери-стик. составить матрицу инцидентности и связности (сильной связности). 2. пользуясь алгоритмом форда-беллмана, найти минимальный путь из x1 в x7 в ориентиро-ванном графе, заданном матрицей весов. 3. пользуясь алгоритмом краскала, найти минимальное остовное дерево для графа, задан-ного матрицей длин ребер. варианты 7.1. 0 0 1 1 0 0 2. ¥ 3 4 9 ¥ ¥ ¥ 3. ¥ 4 3 5 6 1 0 0 0 0 1 12 ¥ ¥ 10 4 ¥ ¥ 4 ¥ 2 ¥ 1 1 0 0 0 1 0 ¥ ¥ ¥ 2 ¥ 1 ¥ 3 2 ¥ 1 1 0 1 0 0 0 1 ¥ ¥ ¥ ¥ 7 6 ¥ 5 ¥ 1 ¥ 3 0 0 1 0 1 0 ¥ ¥ ¥ ¥ ¥ ¥ 5 6 1 1 3 ¥ 0 1 0 1 0 0 ¥ ¥ ¥ ¥ ¥ ¥ 8 ¥ ¥ ¥ ¥ ¥ ¥ ¥ 4. раздел «булевы функции» для данной формулы булевой функции а) найти днф, кнф, сднф, скнф методом равносильных преобразований; б) найти сднф, скнф табличным способом (сравнить с сднф, скнф, полученными в пункте “а”); в) указать минимальную днф и соответствующую ей переключательную схему. варианты функция функция 7. (y x) ~(x z)
Сумма углов четырехугольника равна 360 градусов, так как два угла четырехугольника совпадают с двумя углами треугольника, а два оставшихся равны сумме углов соответствующих треугольников. Т.о. сумма углов четырехугольника = сумме углов обоих треугольников = 180 + 180 = 360 градусов
Выполнив такой чертеж, нетрудно убедиться, что треугольников будет всегда восемь (5 маленьких и 3 больших частично совпадающих с маленькими). Если же пятиугольник представлять, состоящим только из независимых треугольников, то их будет 3. Рассуждая так же, как в случае с четырехугольников, получаем, что сумма углов равна 180 * 3 = 540 градусов.
Общая формула для суммы углов выглядит так : (n - 2) * 180, где n - количество сторон многоугольника
- - - - - - - - - - - - - - - - - - - - -
1) 35 + 37 = 72 (км/ч) - скорость удаления при движении в противоположных направлениях;
2) 72 * 3 = 216 (км) - расстояние между катерами через 3 часа.
Выражение: (35 + 37) * 3 = 216
1) 35 * 3 = 105 (км) - проплыл один катер за 3 часа;
2) 37 * 3 = 111 (км) - проплыл другой катер за 3 часа;
3) 105 + 111 = 216 (км) - расстояние между катерами через 3 часа.
Выражение: 35 * 3 + 37 * 3 = 216
ответ: 216 км.