Для начала переведём все числа в неправильные дроби умножив знаменатель на целое число, а затем прибвавим числитель (для примера 1(целая) и 1/2 - это 2 умножить на 1 и +1. Получается 3/2).
13/5:(n+17/14)-7/5=1/3
Перенесём 1/3 в левую часть:
13/5:(n+17/14)-7/5-1/3=0
Приведём к общему знаменателю:
13/5:(n+17/14)-21/15-5/15=0
13/5:(n+17/14)-26/15=0
То же самое делаем с n:
13/5:((14n+17)/14)-26/15=0
Пользуемся свойством деления дробей (a/b:c/d=a/d*d/c):
13/5*(14/14n+17)-26/15=0
(182/(70n+85))-26/15=0
Накрест умножаем, перенеся в левую часть:
182*15=1820n+2210
n=2/7
Гипотенуза равна 13*2 = 26 см.
Находим второй катет "в" по Пифагору:
в = √(26² - 24²) = √((26-24)(26+24)) = √(2*50) = √100 = 10 см.
Площадь S равна:
S = (1/2)ав = (1/2)24*10 = 120 см².