Для наглядности удобно провести некоторое соответствие с трехмерным пространством
Понятно что z(x,y) можно в нем изобразить как некоторую поверхность

Точке (1,4) соответствует
, т.е. точка
(*)
Линию
удобнее записать как трехмерную кривую
, что будет пересекать поверхность z(x,y) при x=1
Запишем уравнение касательной к этой кривой в точке
, в качестве параметра берем переменную x
(#)
(вычисляется по аналогии с
)
В прикрепленном файле нарисована поверхность, кривая и касательная.
Зная уравнение касательной, построим единичный вектор в направлении убывания x:
Пусть x=0, тогда из (#) получим точку 
Соотв. единичный вектор в направлении этой точки из (*) имеет вид

Понятно что z компонента никак не повлияет на значение производной по направлению, формально вектор можно записать как

И, наконец, найдем искомую производную:
![grad[z(M_0)]\cdot\overset{\rightharpoonup }{n}=\left\{e^4,1 \cdot e^4\right\} \cdot \{-1,4\}\cdot\frac{1}{\sqrt{17} } = \frac{3 e^4}{\sqrt{17}} \approx 39.726](/tpl/images/0992/5590/2e9d7.png)
В равностороннем треугольнике ABC на сторонах AC и BC отметили точки D и E такие, что CD=2AD, BE=2CE. Обозначим точку пересечения отрезков AE и BD через F. Чему равен угол BFC?
Пошаговое объяснение:
1) Введем прямоугольную систему координат .Пусть АВ=ВС=АС=1. Пусть FC∩АВ=Р .Пусть ЕК⊥АС, ВН⊥АС, РМ⊥АС.
2) Определим координаты точек .
А(0;0) ,В(
;
) ,С(1;0) ,Н(0,5 ;0) ,D(
;0) ,К(
;0) , Е(
3)Найдем координаты направляющих векторов: DB(
;
) , РС(
;
).
4)Найдем скалярное произведение векторов .
DB *РС=
*
+
*(
) =
⇒вектор DB⊥PC ⇒∠BFC=90°.
=======================================
Пояснения( жуткие вычисления , слабонервным можно не читать).
1) Координаты точки Е. ΔКСЕ прямоугольный .
КЕ=СЕ*sin60=
*
.
КС=СЕ*cos60=
=
, поэтому АК= 1-
→ Е(
;
) .
2)Координаты точки В. ΔАВН- прямоугольный .
АН=НС=
.
ВН=АВ*sin60=1*
=
3)Ищем координаты точки Р
а)ΔВDC , по т. Менелая
,
,
.
б)ΔАВD , по т. Менелая
,
,
,
AP=
=
.
в)ΔАРМ прямоугольный .
РМ=АР*sin60=
*
=
.
АМ=АР*cos60=
=
→ P (
;
) .
1)29350+8350=37700-72=37628
2)37628*7=263396:92=2863
3)2863+28911=31774
4)81:9=9*24=216
5)31774-216=31558