найти общее решение линейного однородного дифференциального уравнения: 2y'''-7y''=0
Решение -------------------------------------------------------------------------------------------------- Линейным однородным дифференциальным уравнением высшего (3-го) порядка с постоянными коэффициентами называется уравнение вида y⁽³⁾ + a₁y⁽²⁾ + a₂y' + a₃ = 0 где коэффициенты a₁, a₂, a₃ – заданные действительные числа.
Общим решением линейного однородного дифференциального уравнения 3 порядка с постоянными коэффициентами является линейная комбинация y(x) = C₁y₁(x) + C₂y₂(x) + C₃y₃(x)
–линейно независимых на том же отрезке частных решений этого уравнения y₁(x), y₂(x), y₃(x)
Для их нахождения составляется и решается характеристическое уравнение k³ + a₁k² + a₂k + a₃ = 0 Получаемое заменой в исходном дифференциальном уравнении производных y⁽ⁿ⁾ искомой функции степенями kⁿ , причем сама функция заменяется единицей y⁽⁰⁾ =1. Характеристическое уравнение – это алгебраическое уравнение степени n.
Каждому из n корней характеристического уравнения соответствует одно из n линейно независимых частных решений линейного однородного дифференциального уравнения, причем:
– каждому действительному простому корню b соответствует частное решение вида
eᵇˣ -каждому действительному корню k кратности a соответствуют частных решений вида eᵇˣ, xeᵇˣ, x²eᵇˣ, x³eᵇˣ, xᵃ⁻¹eᵇˣ --------------------------------------------------------------------------------------------------
Как видно, характеристическое уравнение имеет один корень второго порядка: k₁₂ = 0 и один простой корень k₃ = 3,5. Частные решение дифференциального уравнения определяются формулами
Поэтому, общее решение однородного уравнения имеет вид
найти общее решение линейного однородного дифференциального уравнения: 2y'''-7y''=0
Решение -------------------------------------------------------------------------------------------------- Линейным однородным дифференциальным уравнением высшего (3-го) порядка с постоянными коэффициентами называется уравнение вида y⁽³⁾ + a₁y⁽²⁾ + a₂y' + a₃ = 0 где коэффициенты a₁, a₂, a₃ – заданные действительные числа.
Общим решением линейного однородного дифференциального уравнения 3 порядка с постоянными коэффициентами является линейная комбинация y(x) = C₁y₁(x) + C₂y₂(x) + C₃y₃(x)
–линейно независимых на том же отрезке частных решений этого уравнения y₁(x), y₂(x), y₃(x)
Для их нахождения составляется и решается характеристическое уравнение k³ + a₁k² + a₂k + a₃ = 0 Получаемое заменой в исходном дифференциальном уравнении производных y⁽ⁿ⁾ искомой функции степенями kⁿ , причем сама функция заменяется единицей y⁽⁰⁾ =1. Характеристическое уравнение – это алгебраическое уравнение степени n.
Каждому из n корней характеристического уравнения соответствует одно из n линейно независимых частных решений линейного однородного дифференциального уравнения, причем:
– каждому действительному простому корню b соответствует частное решение вида
eᵇˣ -каждому действительному корню k кратности a соответствуют частных решений вида eᵇˣ, xeᵇˣ, x²eᵇˣ, x³eᵇˣ, xᵃ⁻¹eᵇˣ --------------------------------------------------------------------------------------------------
Как видно, характеристическое уравнение имеет один корень второго порядка: k₁₂ = 0 и один простой корень k₃ = 3,5. Частные решение дифференциального уравнения определяются формулами
Поэтому, общее решение однородного уравнения имеет вид
b2=b1*q
b3=b1*q^2
b4=b1*q^3
b1*+b1*q+b1*q^2+b1*q^3=15
b1*(1+q+q^2+q^3)=15 1+q+q^2+q^3=15/b1 (1 уравнение)
(1/b1)+(1/b1*q)+(1/b1*q^2)+(1/b1*q^3)=1,875
Приведём к общему знаменателю.
(q^3+q^2+q+1)/b1*q^3=1,875
q^3+q^2+q+1=1,875*b1*q^3 подставим 1 уравнение
15/b1=1,875*b1*q^3
b1^2*q^3=8, так как все числа натуральные, то b1=1 q=2
b2=1*2=2
b3=1*2^2=4
b4=1*2^3=8
1+2+4+8=15
1+(1/2)+(1/4)+(1/8)=1+0,5+0,25+0,125=1,875