М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
hamzmxn66
hamzmxn66
24.03.2020 13:53 •  Математика

Первый пешеход был в пути 4 часа а второй 7 часов причем во второй день он на 156 км больше чем в первый. какой путь он в третий день если был в пути 6 часов и его скорасть не изменялось?

👇
Ответ:
pashasergo
pashasergo
24.03.2020
7-4= 3 ч больше во 2-й день
156:3=52 км/ч скорость
52*6= 312 км в 3-й день
4,4(6 оценок)
Открыть все ответы
Ответ:
1) 5(х-2)-3(2-2х)<=4                                                                                     5х-10-6+6х<=4                                                                                         11х-16<=4                                                                                                 11х<=4+16                                                                                               11х<=20                                                                                                   x<= 20:11                                                                                                 x<=20/11                                                                                                           x<=1 9/11.                                                                                                    
4,8(29 оценок)
Ответ:
lipaalexandrova
lipaalexandrova
24.03.2020

Пусть a, b, c - первые три члена арифметической прогрессии, тогда по условию:

а + b + с = 15   [1]

По свойству арифметической прогрессии:

b - а = с - b

2b = а + с   подставим в уравнение [1], получим:

2b + b = 15

3b = 15

b = 5 - второй член арифметической прогрессии.

Тогда сумма первого и третьего членов:

а + с = 15 - 5

а + с = 10   ⇒   c = 10 - a

Переходим к геометрической прогрессии. По условию:

первый член = а + 1

второй член = b + 3 = 5 + 3 = 8

третий член = с + 9 = 10 - a + 9 = 19 - a

По свойству геометрической прогрессии:

\displaystyle\tt \frac{8}{a+1}= \frac{19-a}{8}; \ \ \ \ a\neq-1\\\\\\ 8\cdot8=(a+1)(19-a)\\\\64=19a-a^2+19-a\\\\a^2-18a+45=0\\\\D=324-180=144=12^2\\\\a_1=\frac{18-12}{2}=3

\displaystyle\tt a_2=\frac{18+12}{2}=15   не удовл.условию, так как искомая геометрическая прогрессия возрастающая.

Получили а = 3, тогда с = 10 - а = 10 - 3 = 7

Итак, первые три члена арифметической прогрессии: 3; 5; 7.

Найдем три первых члена геометрической прогрессии:

первый член = а + 1 = 3 + 1 = 4

второй член = 8

третий член = с + 9 = 7 + 9 = 16

Искомая геометрическая прогрессия: 4; 8; 16; ...

Найдем сумму 7 первых членов.

b₁ = 4  - первый член

q = b₂/b₁ = 8/4 = 2 - знаменатель прогрессии

Искомая сумма:

\tt S_7=\cfrac{b_1(q^n-1)}{q-1}= \cfrac{4(2^7-1)}{2-1}=4\cdot127=508

ответ: 508

4,5(90 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ