ответ:. Треугольник задан вершинами A(-6; -2), B(4; 8), C(2; -8). Найти:
а) уравнение прямой BN, параллельной стороне AC;
составим уравнение прямой BN, параллельной стороне AC (с угловым коэффициентом AC), проходящую через точку B;
угловой коэффициент AC: k= (-8+2)/(+2+6) = -6/8 = -3/4
уравнение прямой BN: (x-4)/-4 = (y-8)/3 ;
y = (-3/4)x + 11;
б) уравнение медианы CD;
середина стороны AB - точка D: (-1; 3);
Уравнение медианы CD:
(x-2)/(-1-2) = (y+8)/(3+8);
(x-2)/-3 = (y+8)/11;
y = -11x/3 - 2/3;
в) уравнение высоты AE;
угловой коэффициент BC: k=(-16)/(-2) = 8;
Так как AE ┴ BC угловой коэффициент AE: k=-1/8
A(-6; -2); уравнение высоты AE:
(x+6)/-8 = (y+2)/1;
y=(-1/8)x - 11/4;
уравнение стороны BC (угловой коэффициент +8);
(x-4)/1=(y-8)/8;
y= 8x-24;
г) угол B .
Угол В - это угол между направляющими векторами прямых BA и BC; Векторы BA(-10;-10); BC(-2;-16). Косинус угла между векторами находится по формуле:
cosB равно скалярному произведению (сумма произведений соответствующих координат) (-10*-2)+(-10* -16)= 180. деленному на произведение их длин
√(10²+10²) *√(2² +16²) = 20√130
cosB = 180 / 20√130 = 9/√130 ≈ 0.789
Угол В = arccos (9/√130) ≈ 0.661 радиан ≈ 37.9°
Пошаговое объяснение:
1) 2(3x + 1) - x ≤ 3(x + 4), 2) 7x + 4(x - 2) > 6(1 + 3x),
6х + 2 - х ≤ 3х + 12, 7х + 4х - 8 > 6 + 18x,
5х + 2 ≤ 3х + 12, 11x - 8 > 6 + 18x,
5х - 3х ≤ 12 - 2, 11x - 18x > 6 + 8,
2х ≤ 10, -7x > 14,
х ≤ 5, x < - 2,
х ∈ (-∞; 5]; x ∈ (-∞; -2);
3) 2(x - 1) - 3(x + 2) < 6(1 + x), 4) 7(y + 3) - 2(y + 2) ≥ 2(5y + 1),
2x - 2 - 3x - 6 < 6 + 6x, 7y + 21 - 2y - 4 ≥ 10y + 2,
-x - 8 < 6 + 6x, 5y + 17 ≥ 10y + 2,
-x - 6x < 6 + 8, 5y - 10y ≥ 2 - 17,
-7x < 14, -5y ≥ -15,
x > -2, y ≤ 3,
x ∈ (-2; +∞); y ∈ (-∞; 3].