1. Чтобы число делилось на 3, в сумме его цифры должны быть равны числу, которое делится на 3. 7+6+3=16, 7+6+3+2=18 делится на 3. Следовательно, добавляем 2, получается 7632. 2. Чтобы число делилось на 6, в сумме его цифры должны быть равны числу, которое делится и на 2, и на 3. 7+6+3=16, 7+6+3+2=18 делится и на 2, и на 3. Следовательно, добавляем 2, получается 7632. 3. Чтобы число делилось на 19, его десятки, сложенные с удвоенным числом единиц, делится на 19. 763*, сумма десятков=763, а теперь надо вместо * взять число и умножить его на 2, чтобы в сумме они делились на 19. Например, возьмем число 8, 2*8=16. Тогда, 763+16=779, делится на 19. Следовательно, 7638.
А) Если исходные числа делятся на p, то и (5n - 1) - 5 * (n - 10) также делится на p, так как каждое слагаемое делится на p. Раскроем скобки, приведём подобные слагаемые: (5n - 1) - 5 * (n - 10) = 5n - 1 - 5n + 15 = 14 = 2 * 7 Поскольку 14 должно делиться на p, то вариантов для p немного - только 2 и 7. Если бы p было равно двум, то тогда на 2 должна была бы делиться и сумма (5n - 1) + (n - 10) = 6n - 11, что невозможно - понятно, что это число нечетное. Итак, p = 7.
б) n - 10 делится на 7, тогда и (n - 10) + 7 = n - 3 также делится на 7, что и требовалось.