√(4-10х-х²)=-2х-1 ;
Возведем в квадрат обе части
(4-10х-х²)=(-2х-1)²
4-10х-х²=4х²+4х+1
5х²+14х-3=0
х₁,₂=(-7±√(49+15))/5=(-7±8)/5
x₁=-3; x₂=1/5
При возведении в квадрат могли появиться посторонние корни. Поэтому сделаем проверку.
x₁=-3; √(4-10*(-3)-9)=-2*(-3)-1 ; 5=5, значит, x₁=-3 -корень исходного уравнения. Второй корень не является корнем исходного уравнения, т.к. правая часть √(4-10х-х²)=-2х-1 при х=1/5 - есть число отрицательное, чего быть не может, т.к. левая часть не может быть отрицательной.
Значит, корень один. И он равен -3.
ответ -3
Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.
Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.
Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:
P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.
Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:
M(X)=np,D(X)=npq,σ(X)=npq−−−√.
Пошаговое объяснение:
Значит половину хорды АВ можно найти из прямоугольного треугольника АОН, где АН - половина хорды, ОН - перпендикуляр к хорде, а угол АОН равен 30°, так как ОН - и высота и биссектриса в равнобедренном треугольнике АОВ. Катет, лежащий против угла 30°, равен половине гипотенузы, значит АН=4.
Тогда АВ=4*2=8.
Второй вариант: угол АОВ - это угол при вершине равнобедренного треугольника АОВ, где АО и ОВ - радиусы. Тогда этот треугольник равносторонний и все стороны равны 8.
ответ: АВ=8.