М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
лол1634
лол1634
06.04.2020 17:45 •  Математика

Вмагазине продали 4 ящика яблок по 9 кг в каждом 6 ящиков вишни по 5 кг в каждом и 48 кг земляники что означают выражения по этому тексту выполни вычисления устно

👇
Ответ:
popopoppop2016
popopoppop2016
06.04.2020
 9*4
 5*6
4+6
9-5
9*4+5*6
9*4-5*6
48-9*4
48-5*6
 9*4+5*6+48
4,7(42 оценок)
Открыть все ответы
Ответ:
marceries
marceries
06.04.2020

первым вопросом мы должны найти бога, который не является богом случая, то есть является либо богом правды, либо богом лжи. Есть множество вопросов, которые могут быть заданы для достижения этой цели. Одна из стратегий — использование сложных логических связей в самом вопросе.

Вопрос Булоса: «Означает ли „da“ „да“, если и только если ты бог правды, а бог B — бог случая?». Другой вариант вопроса: «Является ли нечётным число истинных утверждений в следующем списке: ты — бог лжи, „ja“ означает „да“, B — бог случая?»

Решение задачи может быть упрощено, если использовать условные высказывания, противоречащие фактам . Идея этого решения состоит в том, что на любой вопрос Q, требующий ответа «да» либо «нет», заданный богу правды или богу лжи:

Если я с тебя Q, ты ответишь «ja»?

ответом будет «ja», если верный ответ на вопрос Q это «да», и «da», если верный ответ «нет». Для доказательства этого можно рассмотреть восемь возможных вариантов, предложенных самим Булосом.

Предположим, что «ja» обозначает «да», а «da» обозначает «нет»:

Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «да».

Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «нет».

Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «da». То есть правильный ответ на вопрос «ja», который обозначает «да».

Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он ответит «ja». То есть правильный ответ на вопрос «da», который обозначает «нет».

Предположим, что «ja» обозначает «нет», а «da» обозначает «да» , получим :

Мы спрашивали у бога правды, и он ответил «ja». Поскольку он говорит правду и верный ответ на вопрос Q — «da», оно обозначает «да».

Мы спрашивали у бога правды, и он ответил «da». Поскольку он говорит правду и верный ответ на вопрос Q — «ja», оно обозначает «нет».

Мы спрашивали у бога лжи, и он ответил «ja». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «ja». Но, так как он лжёт, верный ответ на вопрос Q — «da», что означает «да».

Мы спрашивали у бога лжи, и он ответил «da». Поскольку он всегда лжёт, поэтому на вопрос Q он отвечает «da». Но, так как он лжёт, верный ответ на вопрос Q — «ja», что означает «нет».

Используя этот факт, можно задавать вопросы:

Спросим бога B: «Если я с у тебя „Бог А — бог случая?“, ты ответишь „ja“?». Если бог B отвечает «ja», значит, либо он бог случая (и отвечает случайным образом), либо он не бог случая, а на самом деле бог A — бог случая. В любом варианте, бог C — это не бог случая. Если же B отвечает «da», то либо он бог случая (и отвечает случайным образом), либо B не бог случая, что означает, что бог А — тоже не бог случая. В любом варианте, бог A — это не бог случая.

Спросим у бога, который не является богом случая (по результатам предыдущего вопроса, либо A, либо C): «Если я с у тебя: „ты - бог лжи?“, ты ответишь „ja“?». Поскольку он не бог случая, ответ «da» обозначает, что он бог правды, а ответ «ja» обозначает, что он бог лжи.

Спросим у этого же бога «Если я у тебя с Бог B — бог случая?“, ответишь ли ты „ja“?». Если ответ «ja» — бог B является богом случая, если ответ «da», то бог, с которым ещё не говорили, является богом случая.

Оставшийся бог определяется методом исключения.

4,7(77 оценок)
Ответ:
Banan125027
Banan125027
06.04.2020

1. Если два числа не имеют никаких общих делителей, кроме 1, то они взаимно простые.

Возьмем к примеру 3 и 5

У них НОД 1

Значит утверждение неверное

2. Все составные числа – это произведение 2-х натуральных чисел, которые больше единицы.

К примеру, число 4 = 2*2

А у простого числа только два множителя - это единица и само это число.

К примеру, 3 = 1*3

Сравним 3 и 4

У них НОД 1

Значит могут и утверждение верное

3. Смотрим пункт 1 и видим, что могут, значит верное

4. Не все являются взаимно простыми.

К примеру 5 и 25 имеют НОД = 5

Утверждение неверное

4,6(24 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ