Диагональ равнобокой трапеции перпендикулярна боковой стороне и образует с основанием трапеции угол α. Найдите высоту трапеции, если радиус окружности, описанной около трапеции, равен h.
=============================================================
Первый Около равнобедренной трапеции всегда можно описать окружность. С учётом условия (∠АСD = 90°) получаем, что АD - диаметр описанной окружности. AD = 2h.Если вписанный в окружность угол прямой, то он опирается на диаметр этой окружности.Продолжим высоту СН трапеции до пересечения с описанной окружностью в точке Е. Диаметр окружности является серединным перпендикуляром по отношению к хорде СЕ ⇒ СН = НЕ, AD⊥CE ⇒ ΔACE - равнобедренный, АС = АЕ, ∠CAD = ∠EAD = α, ∠САЕ = 2α. Или можно ссылаться на симметрию относительно AD.По теореме синусов: R = h = CE/2•sin2α = 2•CH/2•sin2α = CH/sin2α ⇒ CH = h•sin2αВторой В ΔACD: cosα = AC/AD ⇒ AC = AD•cosα = 2h•cosαВ ΔАСН: sinα = CH/AC ⇒ CH = AC•sinαЗначит, СН = (2h•cosα) •sinα = h•sin2αОТВЕТ: h•sin2αДиагональ равнобокой трапеции перпендикулярна боковой стороне и образует с основанием трапеции угол α. Найдите высоту трапеции, если радиус окружности, описанной около трапеции, равен h.
=============================================================
Первый Около равнобедренной трапеции всегда можно описать окружность. С учётом условия (∠АСD = 90°) получаем, что АD - диаметр описанной окружности. AD = 2h.Если вписанный в окружность угол прямой, то он опирается на диаметр этой окружности.Продолжим высоту СН трапеции до пересечения с описанной окружностью в точке Е. Диаметр окружности является серединным перпендикуляром по отношению к хорде СЕ ⇒ СН = НЕ, AD⊥CE ⇒ ΔACE - равнобедренный, АС = АЕ, ∠CAD = ∠EAD = α, ∠САЕ = 2α. Или можно ссылаться на симметрию относительно AD.По теореме синусов: R = h = CE/2•sin2α = 2•CH/2•sin2α = CH/sin2α ⇒ CH = h•sin2αВторой В ΔACD: cosα = AC/AD ⇒ AC = AD•cosα = 2h•cosαВ ΔАСН: sinα = CH/AC ⇒ CH = AC•sinαЗначит, СН = (2h•cosα) •sinα = h•sin2αОТВЕТ: h•sin2α
- по координатам точек определить уравнение прямой АВ и, подставив у = 0, определить координату х (то есть пересечение с осью Ох),
- можно чисто геометрическим
так как точки А и В равно удалены от оси Ох, то прямая АВ пересекает эту ось на равном расстоянии от точек А и В. Находим эту среднюю точку: Δх = (3-(-1))/2 = 4/2 = 2.
Теперь отнимем это значение от координаты по оси Ох точки В (или можно прибавить к координате точки А):
х = 3-2 = 1 (или -1+2 = 1).
ответ: отрезок AB пересекает ось абсцисс в точке (1; 0) 2).