Десятичные дроби впервые были употреблены замечательным узбекским ученым ал-Каши. В начале ХV в. в Средней Азии вблизи города Самарканд была создана большая обсерватория. В ней производились наблюдения за движением звезд, планет и Солнца, вычислялись дни праздников и т. д. В обсерватории работали лучшие ученые того времени. Руководил обсерваторией ученый Джемшид ибн-Масуд ал-Каши, иногда называемый Гиясседдином ал-Каши, который был высокообразованным математиком и астрономом. Он оставил после себя много замечательных математических открытий. В 1427 г. ал-Каши закончил книгу “Ключ к арифметике” . В этой книге он впервые в мире употребил десятичные дроби, дал правила действия с ними, пояснил эти правила на примерах, подробно описал новую, открытую им систему записи дробей. Для обозначения разрядов он использовал разные варианты: отделял их вертикальной чертой, писал разными чернилами, иногда выписывал название разряда полностью словами. Потребность в упрощении записи и действий с дробями была большая. Европейские ученые искали и, на конец, нашли новый вид дробей, более простой и более удобный, В Европе впервые подробно описал десятичные дроби талантливый фламандский инженер и ученый Стевин (1548-1620). В книге “О десятой” изданной в 1585 г. , Стевин подробно описал правила действий и преимущества открытых им десятичных дробей. Стевин не был знаком с трудами ал-Каши и действительно открыл десятичные дроби. Но он открыл открытое. Первенство принадлежит Джемшиду ал-Каши, опередившему Стевина на полтора века. Теперь относительно запятой в десятичных дробях. Ставить запятую после целой части десятичной дроби предложил знаменитый немецкий ученый Кеплер (1571 1630). до Кеплера после целой части ставили нуль в скобках, напри мер, 3,7 писали как 3(0)7, отделяли вертикальной чертой 3 7 или писали разными чернилами, напри мер, целую часть числа - черными, а дробную - красными. Вот что нашла
Могло потеряться решение y = 0. d(y/x) - d(ln Cy) = 0 – заменяем dy/y на дифференциал логарифма d(y/x - ln Cy) = 0 – сумма дифференциалов = дифференциалу суммы y/x - ln Cy = 0 – решение №1.
Проверкой убеждаемся, что x = 0 и y = 0 – также решения. (0, 0) – особая точка уравнения, в ней решение не единственно.
2) Область интегрирования изображена на рисунке. Двойной интеграл можно свести к повторным, для обоих порядков интегрирования получается не берущийся в элементарных функциях интеграл от exp(x)/x. Одна из его первообразных – интегральная экспонента Ei(x).