Пошаговое объяснение:
z = x²y - 2xy - 3x² - y² + 6x - 9y
теперь решаем систему
из второго уравнения выражаем у и подставляем в первое уравнение
у = х²/2 - х - 9/2
2x(х²/2 - х - 9/2) -6x -2(х²/2 - х - 9/2) +6 =0
x³ -3x² -13x +15 =0 ⇒x₁= -3; y₁=3; x₂=1; y₂= -5; x₃=5; y₃=3
мы получили три критические точки
M₁(1;-5), M₂(-3;3), M₃(5;3)
но пока не знаем, кто из них минимум, кто максимум
поэтому ищем частные производные второго порядка
теперь будем считать значение вторых производных в кажной точке
M₁(1;-5)
AC - B² = 32 > 0 и A < 0 , то в точке M₁(1;-5) максимум z(1;-5) = 28
M₂(-3;3)
AC - B² = -64 < 0, то в точке M₂(-3;3) глобального экстремума нет.
M₃(5;3)
AC - B² = -64 < 0, то точке M₂(5;3) глобального экстремума нет.
ответ
функция имеет один экстремум
в точке M₁(1;-5) и это максимум z(1;-5) = 28;
а)8 5/7+3,15+1 2/7+4,25=(8 5/7+1 2/7)+(3,15+4,25)=10+7,4=17,4
б)4,7+2/3+1 3/5+3,3=(4,7+3,3)+(2/3+1 3/5)=8+2 4/15=10 4/15
в)8 19/20+5,875+20 35/40=(8 19/20+20 35/40)+5,875=29 33/40+5,875=29 33/40+5 35/40=34 68/40=34 17/10=35,7
г)6,75+3 1/4-7 5/28=(3 1/4-7 5/28)+6,75= -3 13/14+6,75= -3 13/14+6 3/4=2 23/28
д)2,1+1 7/30-(4-2,9)=2,1+1 7/30-1,1=(2,1-1,1)+1 7/30=1+1 7/30=2 7/30
е)22-(4 5/7+8,91+1,09)=22-(4 5/7+10)=22-4 5/7-10=(22-10)-4 5/7=12-4 5/7=7 2/7
ж)76-4 7/25+8,28=(76+8,28)-4 7/25=84,28-4 7/25=84 7/25-4 7/25=80
з)2 5/6-1,6-2/3=(2 5/6-2/3)-1,6=2 1/6-1,6=17/30
2)1,2 * 55 = 66 (га) - засеяно