X – множество треугольников, А, В и С – его подмножества. Можно
ли говорить о разбиении множества X на классы А, В и С, если:
а) А – множество остроугольных треугольников, В – множество
тупоугольных треугольников, С – множество прямоугольных треугольников;
б) А – множество равнобедренных треугольников, В – множество
равносторонних треугольников, С – множество разносторонних
треугольников? - 1 задача
В классе 18 учащихся увлекаются химией, а 13 – географией. Каким
может быть число учащихся, увлекающихся: а) обоими предметами; б) хотя бы
одним предметом; в) только одним предметом? - 2 задача
Сколько различных множеств можно составить из 5 различных
цифр? - 3 задача
Выделите мой ответ лучшим и подпишитесь на меня .
c = 1 3/14 = 17/14 ; b = 5/6
2*( 17/14 ) + ( 5/6 )² = 17/7 + 25/36 = 2 3/7 + 25/36 = 2 108/252 + 175/252 =
= 2 283/252 = 3 31/252