Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.
Теоремы (свойства параллелограмма):
В параллелограмме противоположные стороны равны и противоположные углы равны: AB = CD, BC = AD, \angle ABC = \angle
ADC,\angle BAD = \angle BCD.
Диагонали параллелограмма точкой пересечения делятся пополам: AO
= OC, OB = OD.
Углы, прилежащие к любой стороне, в сумме равны 180^\circ .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: AC^2 + BD^2 = 2AB^2 + 2BC^2 .
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм. Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм. Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм. Середины сторон произвольного (в том числе невыпуклого или четырехугольника K,\;L,\;M,\;N являются вершинами параллелограмма Вариньона. Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника ABCD. Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.
Пошаговое объяснение:
Vтов*tтов_встр = Vпас*tпас_встр <=> 54*4 = Vпас*3 <=> Vпас=72 (км/ч)
Путь от А до Б пассажирский проехал за 9 ч.
Sаб= Vпас*tпас_аб = 72*9 =648 (км)
tтов_аб= Sаб/Vтов = 648/54 =12 (ч)
Товарный выехал в 9:00, был в пути 12 ч, следовательно, прибыл в Б в 21:00.