Дано: МО = ON AM = AN Найти:∠ АОN Решение. Проведя необходимые построения, мы получим равнобедренный Δ АМN, т.к. по условию АМ = AN АО - медиана ΔAMN, т.к. МО = ON по условию. По свойству равнобедренного Δ, медиана, проведенная к основанию, является также высотой ( и биссектрисой вершины.) Т.е. АО ⊥ MN, значит, ∠ АОN =∠ AOM = 90° ответ: 90°
Примечание: Если такое свойство медианы нужно доказать, то Δ AON = Δ AOM по трем сторонам (AN=AM и ON=OM по условию; AO - общая) Тогда ∠AOM = ∠AON , но они смежные. Значит, ∠AON=∠AOM = 180 : 2 = 90°
Дано: МО = ON AM = AN Найти:∠ АОN Решение. Проведя необходимые построения, мы получим равнобедренный Δ АМN, т.к. по условию АМ = AN АО - медиана ΔAMN, т.к. МО = ON по условию. По свойству равнобедренного Δ, медиана, проведенная к основанию, является также высотой ( и биссектрисой вершины.) Т.е. АО ⊥ MN, значит, ∠ АОN =∠ AOM = 90° ответ: 90°
Примечание: Если такое свойство медианы нужно доказать, то Δ AON = Δ AOM по трем сторонам (AN=AM и ON=OM по условию; AO - общая) Тогда ∠AOM = ∠AON , но они смежные. Значит, ∠AON=∠AOM = 180 : 2 = 90°
2t²-9t+4=0, t=4, t=1/2. Делаем обратную замену:
4^cosx=4⇒cosx=2, корней нет.
4^cosx=1/2
cosx=-1/2
x=+-2π/3+2πn, n∈Z.
при n=-1 x=-2π+ 2/3 π = -4π/3 ∉ промежутку
x=-2π-2/3 π=-8π/3 ∈ промежутку.
при n=-2 x=-4π- +2/3 π ∉ промежутку.