1. У пирамиды 1883 вершины сколько вершин в основании пирамиды?
1882 вершины в основании. У пирамиды вершины в основании и одна вершина, к которой сходятся боковые рёбра.
2. У пирамиды 1800 ребер какая это пирамида?
900-угольная. Количество боковых рёбер пирамиды равно количеству рёбер в основании и равно количеству вершин в основании. 1800:2=900
3. У пирамиды 28 граней сколько у неё вершин?
28 вершин. 28 граней - это 27 граней боковых и одна грань в основании. Значит, в основании лежит 27-угольник, то есть в основании 27 вершин, и ещё одна вершина, в которой сходятся боковые рёбра.
4. Существует ли пирамида у которой 1999 ребер?
Не существует. Количество рёбер в основании равно количеству боковых рёбер, всего у любой пирамиды чётное количество рёбер. 1999 - число нечётное.
5. Сумма числа ребер и числа вершин пирамиды равна 25. Какая это пирамида? Восьмиугольная.
Пусть число вершин в основании Х. Тогда всего вершин Х+1. Количество рёбер в основании Х, количество боковых рёбер тоже Х. Всего рёбер 2Х. Уравнение :
X + 1 + 2X = 25; 3X = 24; X = 8
1)Пирамида - многогранник, основание которого — многоугольник, а остальные грани - треугольники, имеющие общую вершину.
Площадь боковой поверхности правильной шестиугольной пирамиды формула:
, где a - сторона основания, b - боковая грань) 2) SK=10 — апофема, SH=8 — высота, НК — половина ребра основания. HK=√(SK2—HK2)=√(102—82)=6, Тогда ребро АВ=12. Площадь поверхности S=4⋅(SK⋅AB/2)+AB2=4⋅(10⋅12/2)+122=384
ответ: 384
Пошаговое объяснение:
b) имеет смысл, так как tgможет принимать любые значения от - ∞ до +∞
с) не имеет смысла, т.к. нет такой функции stuccos
d) имеет смысл, так как cos больше -1 и меньше 1
ответ: имеют смысл выражения b) и d)