126
Пошаговое объяснение:
Чтобы решить эту задачу надо сложить равенства из условия задачи. Получится
sinA+sinB+cosA+cosB=2
sinA+cosA+sinB+cosB=2
Вспомним область значения функции y=sin x. Это E(y)=[-1,1]. Если синус равен 0, то косинус равен 1. Но синус угла четырехугольника всегда больше 0. Если синус равен 1 то косинус равен 0, и сумма синуса и косинуса равна 1. Либо они оба меньше 1. Следовательно sinA+cosA не превосходит 1. Аналогично sinB+cosB не превосходит 1. Следовательно sinA+cosA+sinB+cosB не превосходит 2. Но мы доказали что оно равно 2 поэтому sinA должен быть равен 1 и sinB должен быть равен 1. Этот четырехугольник ABCD - на самом деле прямоугольная трапеция!
Вычислим теперь угол D. Применим свойство трапеции: сумма внутренних односторонних углов при боковой стороне равна 180 градусов. Следовательно
C+D=180
54+D=180
D=180-54
D=126
Пошаговое объяснение:
1) 2020 = 20*101 = 2*2*5*101
Оно на 19 вообще не делится.
2) Пусть а = 0, тогда b+c = 10. Подходят варианты: (0,0,10); (0,1,9); (0,2,8); (0,3,7); (0,4,6); (0,5,5).
С учётом перестановок внутри троек получается 30 вариантов.
Пусть a = 1, тогда b+c = 9.
(1,1,8); (1,2,7); (1,3,6); (1,4,5).
Варианты с 0 уже рассмотрены, поэтому тройку (1,0,9) я не учитываю.
С учётом перестановок получается 21 вариант.
Пусть а = 2, тогда b+c = 8.
(2,2,6); (2,3,5); (2,4,4).
Опять же, варианты с 0 и 1 уже рассмотрены.
С учётом перестановок получается 12 вариантов
Пусть а = 3, тогда b+c = 7.
(3,3,4).
С учётом перестановок получается 3 варианта.
Всего получается 30 + 21 + 12 + 3 = 66 вариантов.
x1-x2=6
2x1=14
x1=7
x2=8-7
x2=1
q=x18x2
q=7*1
q=7