1) -9 2)-2 3)0,2
Пошаговое объяснение:
1)-7+(-18)+12+(-5)+9
Для более удобного вычисления выберем другой порядок действий
12+9-7-18-5
пока отбросим 9 и -18 12-7-5=12-12=0
9-18+0=-9
2)3,46+(-2,63)+(-5,46)+2,63 Делаем те действия, что делали в первом примере
3,46-5,46=-2 (т.к. при вычитании получится целое число и мы избавимся от дроби ) (-2,63)+2,63=0 ( тут понятно, думаю )
-2+0=-2
3)0,2+(-1,4)+(-1,7)+3,1 Делаем те действия, что делали в первом и втором примерах, но слегка по-другому
отбросим пока 0,2
-1,4-1,7+3,1=-3,1+3,1=0
0,2+0=0,2
S1 Прямоугольника LMNK = 60 см.кв
S2 Треугольника LMN = 30 см.кв
Пошаговое объяснение:
Дано:
Прямоугольник LMNK
LM = 12 см.
MN = 5 см.
Найти:
S1 Прямоугольника LMNK - ?
S2 Треугольника LMN -?
1) Рассмотрим прямоугольник LMNK:
LM = 12 см. (а)
MN = 5 см. (b)
Воспользуемся формулой нахождения площади: S = ab ⇒
S1 = 12 × 5
S1 = 60 см2 (кв.см)
2) Аналогично находим S треугольника LMN:
Нам известна площадь прямоугольника и с её мы находим площадь треугольника просто разделив её пополам (т.к. треугольник также является прямоугольным)
S2 = 60 : 2
S2 = 30 см2 (кв.см)
Если по течению топлива хватает на 30 км, а против течения на 20, значит, он проплывет эти расстояния за одинаковое время.
Иначе говоря, если скорость лодки в стоячей воде v км/ч, а скорость течения w км/ч, то время
t = 30/(v+w) = 20/(v-w)
3(v - w) = 2(v + w)
3v - 3w = 2v + 2w
v = 5w - скорость лодки в 5 раз выше скорости течения.
t = 30/(6w) = 20/(4w) = 5/w
Если он отплывет на x км вниз по течению, а потом поднимется обратно, то получится уравнение
x/(6w) + x/(4w) = 5/w
Или, умножив все на w
x/6 + x/4 = 5
2x + 3x = 5x = 5*12
x = 12 км.
б) Если w = 5 км/ч, то он поднимется на 20 км за
t1 = 20/(4w) = 20/20 = 1 час, и вернется по течению без мотора за
t2 = 20/5 = 4 часа.
Общее время t = t1 + t2 = 1 + 4 = 5 часов.