Решаем силой Разума - сначала думаем.
Мысль 1 - какие бывают масштабы? - на рисунке в приложении карта случайной местности. Три вида:численный, именованный, линейный.
Мысль 2 - как легче вычислять - делить или умножать.
Дано: М = 1:200 - численный масштаб,
N₁ = 7 м - реальный отрезок, N₂ = 5.2 м - реальный радиус.
Найти: L₁=? L₂=? Изобразить в масштабе.
Мысль 3 - вычислим через численный масштаб и умножаем.
1) L₁ = N₁ * M = 7(м)* (1/200) = 7/200 =0,035 (м) = 3,5 см = 35 мм. - длина отрезка - ответ.
Мысль 4 - вычислим через именованный масштаб, переведём в него и будем делить.
В 1 см = 200 см = 2 м или k = 2 м/см - именованный масштаб.
2) L₁ =N₁ : k = 7 (м) : 2 (м/см) = 3,5 см = 35 мм - длина отрезка - ответ - (гораздо проще оказалось).
Аналогично два варианта для задачи б) - радиус N₂ = 5,2 м.
3) L₂ = 5.2 (м) * 1/200 = 0,026 м = 2,6 см = 26 мм - радиус - ответ.
4) L₂ = 5.2 (м) : 2(м/см) = 2,6 см = 26 мм - радиус - ответ.
Мысль 5 - изображаем результаты на рисунке в приложении. Потребуется циркуль.
ДОПОЛНИТЕЛЬНО:
ИНТЕРЕСНА ОБРАТНАЯ ЗАДАЧА - как по карте или плану найти реальные размеры. Для этого можно использовать линейный нониус, который обычно есть на транспортире.
v(c)-скорость скоростного поезда
v(t)-скорость товарного поезда
t(c)-время скоростного поезда
t(t)-время товарного поезда
v(c)*t(c)=v(t)*t(t)
(20+v(t))*(t(t)-1)=v(t)*t(t) (по условию)
20*t(t)-20+v(t)*t(t)-v(t)=v(t)*t(t)
v(t)=20*t(t)-20 =>t(t)=(v(t)+20)/20
s=240
s=v(t)*t(t)
240=v(t)*(v(t)+20)/20
4800=v(t)^2+20v(t)
v(t)^2+20v(t)-4800=0
=> v(t)=60 км/ч и v(t)=-80км/ч
но скорость отрицательной быть не может
=> ответ v(t)=60 км/ч