Использовалась формула производной сложной функции f(g(x))' = f'(g(x)) * g'(x) Также производная суммы (или разности) равна сумме (разности) производных.
Например, во втором случае имеем разность и сложную функцию. Поэтому отдельно берём производную от икса (x)' = 1 и от косинуса, которая уже сложная функция, т.к. под синусом находится другая функция, а именно g(x) = 2x - pi/3. f(g(x)) = cos(2x - pi/3) Производная g(x) понятна g'(x) = 2, т.к. pi/3 - это константа, производная которой равна нулю, а производная показательной функции по формуле (x^n)' = n * x^(n-1) Производная от косинуса берёт без учёта аргумента, он просто переписывается. А производная от косинуса это минус синус. Вот и получилось (-sin(2x- pi/3). Перемножив производные от синуса и показательной функций, получаем результат.
1. 52 % белые = 52:100=13/25 2. Известно, что количество шариков не более 70, значит необходимо найти целое натуральное число от 0 до 70, чтобы было кратно 25. Такие числа 25 и 50. 2. После того, как достали 3 шарика, количество белых и черных шаров стало одинаковым, значит число должно быть кратным 2 (ровно половина белых и черных шариков). 50-3=47 – не подходит т.к. оно не делится на 2 (нечетное число). 25-3=22, подходит 22:2=11 шариков черных и белых осталось, после того, как вытащили 3 шарика. 3) Найдем количество белых шариков, которые изначально были в ящике: 25*13/25= 13 белых шариков, тогда черных 25-13=12 черных шариков. 13-12=1 – количество белых шариков больше черных. (13-11=2 белых шарика достали и 12-11=1 черный шарик достали.) ответ: Первоначально белых шариков было на 1 больше, чем черных.
1. 1) Если он проходит 38км по течению за 1 час, то его скорость + скорость реки равна 38км/ч, вычитаем отсюда 4км/ч(скорость течения реки) и получаем, что скорость теплохода 34км/ч. 2)Если он будет плыть против течения, то его скорость уменьшится на 4км/ч(скорость течения реки), что составит 30км/ч. Отсюда видно, что за час он пройдет 30км. ответ: 30км. 2.2-й день: Х га 1-й день: х*90/100 = 9х/10 3-й день: 9х/10 * 2/3 = 3х/5 Далее складываем все, что вспахали за 3 дня: 9х/10 + = 3х/5 = 250 приводим к общему знаменателю и получаем: 9х + 10х+ 6х = 2500 25х = 2500 х = 100 га (вспахали во второй день) Тогда в первый вспахали 9*100/10 = 90 га. В третий вспахали 3*100/5 = 60 га. 3.Формула длины окружностиПериметр = 2 пи r = пи*d , d - диаметр окружности = периметр : 3.14 = 14 : 3.14 = 4.4586...см, округли 4.46 смм
y' = (x - cos(2x - pi/3))' = 1 - (-sin(2x - pi/3) * 2) = 1 + 2 sin(2x - pi/3)
Использовалась формула производной сложной функции
f(g(x))' = f'(g(x)) * g'(x)
Также производная суммы (или разности) равна сумме (разности) производных.
Например, во втором случае имеем разность и сложную функцию. Поэтому отдельно берём производную от икса (x)' = 1 и от косинуса, которая уже сложная функция, т.к. под синусом находится другая функция, а именно g(x) = 2x - pi/3.
f(g(x)) = cos(2x - pi/3)
Производная g(x) понятна g'(x) = 2, т.к. pi/3 - это константа, производная которой равна нулю, а производная показательной функции по формуле (x^n)' = n * x^(n-1)
Производная от косинуса берёт без учёта аргумента, он просто переписывается. А производная от косинуса это минус синус. Вот и получилось (-sin(2x- pi/3).
Перемножив производные от синуса и показательной функций, получаем результат.