15:3+2(х+4)=40-4х 5+2х+8=40-4х (раскрыли скобки) 2х+4х=40-5-8 (множители с буквой в левой части, без в правой) 6х=27 (обычное уравнение) х=4 3:6, 4 1:2, 4,5.
Решение Находим первую производную функции: y' = -( - x + 13)e^(- x + 13) - e^(- x + 13) или y' = (x -14)e^(- x + 13) Приравниваем ее к нулю: (x - 14) e^(- x + 13) = 0 e^(- x + 13) ≠ 0 x - 14 = 0 x = 14 Вычисляем значения функции f(14) = 1/e Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = (- x + 13)e^(- x + 13) + 2e^(- x + 13) или y'' = (- x+15)e^(- x + 13) Вычисляем: y'' (14) = (- 14+15)e^(- 14 + 13) = e⁻¹ = 1/e y''(14) = 1/e > 0 - значит точка x = 14 точка минимума функции.
Трапеция равнобедренная, значит, углы при ее основаниях равны. проведем две высоты из вершин меньшего основания - см. рисунок нижнее основание разделится на 3 отрезка: 21 + 50 + 21 рассмотрим прямоугольный треугольник, образованный боковой стороной и высотой трапеции. по условию угол при основании равен 60°, значит, второ острый угол данного прямоугольного треугольника равен 90° - 60° = 30° длина катета, лежащего напротив угла в 30°, в два раза меньше длины гипотенузы. значит, длина боковой стороны равна 21 х 2 = 42 найдем периметр: 29 + 50 + 42 + 42 = 163
5+2х+8=40-4х (раскрыли скобки)
2х+4х=40-5-8 (множители с буквой в левой части, без в правой)
6х=27 (обычное уравнение)
х=4 3:6, 4 1:2, 4,5.
у+3(у-2)+18=12
у+3у-6+18=12
4у=0
у=0