Пошаговое объяснение:
Парабола является кривой, представляющей собой геометрическое место точек,
равноудалённых от фокуса параболы и другой заданной прямой. Эта кривая, а также
соответствующий ей в трёхмерном мире эллиптический параболоид, играют важную
роль во многих физических процессах, в связи с чем нашли широкое применение и
рас во многих инженерных, технических и др. устройствах, в
архитектуре. Парабола изображена на рисунке 1.
Парабола является линией конического сечения, открытие которых
приписывают Менехему. Учение о конических сечениях было развито Евклидом, а
также Аполлонием Пергским, который рассмотрел в своём труде все конические
сечения, а также их свойства, причём труды Аполлония примечательны тем, что они
представляют собой синтез аналитической и начертательной геометрии.
Важным свойством параболы является то, что любой предмет в поле тяготения
перемещается по параболе при отсутствии сопротивления воздуха или в условиях,
когда мы этим фактором можем пренебречь.
Наиболее значимым является т.н. «оптическое свойство» параболы - пучок
лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. Изза этого параболе нашли самые различные применения в различных оптических
устройствах, от ламп и до телескопов. В силу корпускулярно-волновой природы света,
оптические свойства параболы были переложены на составные части различных
радиопередающих устройств, например, узконаправленные, спутниковые антенны и
проч.
Делим на два угла с разностью в 62°/
∠∠α = (180 - 62)/2 = 118/2 = 59° - малый угол
β = 59 + 62 = 121°- большой угол.
Получаем такие неразвернутые углы
∠AOD = ∠BOC = ∠α = 59°
∠AOC = ∠BOD = ∠β =121°
∠AOD = 180+121 = 301°
∠BOD = 180+59 = 239°