Відповідь:
Исследуем функцию, заданную формулой: yx=x3-3x
Область определения: множество всех действительных чисел
Первая производная: y'x=3x2-3
x3-3x' =
=x3'-3x' =
=3x2-3x' =
=3x2-3•1 =
=3x2-3
Вторая производная: y''x=6x
Вторая производная это производная от первой производной.
3x2-3' =
=3x2'-3' =
=3x2'-0 =
=3x2' =
=32x =
=3•2x =
=3•2x =
=6x
Точки пересечения с осью x : x=-3;x=0;x=3
Для нахождения точек пересечения с осью абсцисс приравняем функцию к нулю.
x3-3x=0
Решаем уравнение методом разложения на множители.
xx2-3=0
решение исходного уравнения разбивается на отдельные случаи.
Случай 1 .
x=0
Случай 2 .
x2-3=0
Перенесем известные величины в правую часть уравнения.
x2=3
ответ этого случая: x=-3;x=3 .
ответ: x=-3;x=0;x=3 .
Точки пересечения с осью y : y=0
Пусть x=0
y0=03-3•0=0
Вертикальные асимптоты: нет
Горизонтальные асимптоты: нет .
Наклонные асимптоты: нет .
yx стремится к бесконечности при x стремящемся к бесконечности.
yxx стремится к бесконечности при x стремящемся к бесконечности.
Критические точки: x=-1;x=1
Для нахождения критических точек приравняем первую производную к нулю и решим полученное уравнение.
3x2-3=0
3x2=3
x2=3:3
x2=1
ответ: x=-1;x=1 .
Возможные точки перегиба: x=0
Для нахождения возможных точек перегиба приравняем вторую производную к нулю и решим полученное уравнение.
6x=0
x=0:6
x=0
ответ: x=0 .
Точки разрыва: нет
Симметрия относительно оси ординат: нет
Функция f(x) называется четной, если f(-x)=f(x).
yx-y-x =
=x3-3x--x3-3-x =
=x3-3x--x3+3-x =
=x3-3x+x3-3x =
=2x3+-6x =
=2x3-6x
2x3-6x≠0
y-x≠yx
Симметрия относительно начала координат: функция нечетная, график симметричен относительно начала координат.
Функция f(x) называется нечетной, если f(-x)=-f(x).
yx+y-x =
=x3-3x+-x3-3-x =
=x3-3x+-x3-3-x =
=x3-3x-x3+3x =
=x3-3x-x3+3x =
=0
y-x=-yx
Относительные экстремумы:
Проходя через точку минимума, производная функции меняет знак с (-) на (+).
Относительный минимум 1;-2 .
Проходя через точку максимума. производная функции меняет знак с (+) на (-).
Относительный максимум -1;2 .
Множество значений функции: множество всех действительных чисел
Наименьшее значение: нет
Наибольшее значение: нет
Детальніше - на -
Покрокове пояснення:
2 м³ = 2000 дм³
6000 см³ = 6 дм³
5 м³ 50 дм³ = 5050 дм³
1 м³ = 1000 дм³
16 м³ 5 дм³ = 16005 дм³
5000 см³ = 5 дм³
1 м³ 200 дм³ 1000 см³ = 1201 дм³
20 м³ 20 дм³ = 20020 дм³
8 м³ = 8000 дм³
10 м³ 100 дм³ = 10100 дм³
3 м³ 20000 см³ = 3020 дм³
7 м³ 7 дм³ = 7007 дм³
10 м³ = 10000 дм³
7 м³ 8 дм³ = 7008 дм³
3 м³ 650 дм³ 10000 см³ = 3660 дм³
1 м³ = 1000 дм³
2 м³ 10 дм³ = 2010 дм³
40000 дм³ = 40000 дм³
6 м³ 2000 см³ = 6002 дм³
6 м³ 80 дм³ = 6080 дм³
12 м³ 5 дм³ = 12005 дм³