Начерти в тетради отрезок аб длинной 1 дм 2 см раздели его точками на 3 равные части обозначь букваами отмеченные точки запиши обозначения всех полученных отрезков
Пусть наибольшее возможное значение наибольшего общего делителя равно d. Тогда каждое из 13 чисел делится на d, значит, и их сумма, 1988, делится на d. Кроме того, должно выполняться неравенство 1988/d≥13 (каждое из 13 чисел не меньше d).
Разложим на множители число 1988: 1988=2²*7*71. Для того, чтобы число d было наибольшим, число 1988/d должно быть наименьшим возможным, но не меньше 13. Поскольку 1988 не делится на 13, наимеьшим возможным значением дроби является число 2*7=14. А значит, наибольшим возможным значением делителя d является число 1988/14=142. Оно достигается, если одно из чисел равно 2*142=284, а 12 других равны 142.
Пусть наибольшее возможное значение наибольшего общего делителя равно d. Тогда каждое из 13 чисел делится на d, значит, и их сумма, 1988, делится на d. Кроме того, должно выполняться неравенство 1988/d≥13 (каждое из 13 чисел не меньше d).
Разложим на множители число 1988: 1988=2²*7*71. Для того, чтобы число d было наибольшим, число 1988/d должно быть наименьшим возможным, но не меньше 13. Поскольку 1988 не делится на 13, наимеьшим возможным значением дроби является число 2*7=14. А значит, наибольшим возможным значением делителя d является число 1988/14=142. Оно достигается, если одно из чисел равно 2*142=284, а 12 других равны 142.
12 см : 3 = 4 см каждый из трех отрезков получится