a) это дифференциальное уравнение первого порядка, разрешенной относительной производной. Также это уравнение с разделяющимися переменными. Переходя к определению дифференциала
- уравнение с разделёнными переменными
Интегрируя обе части уравнения, получаем
Получили общий интеграл.
Найдем решение задачи Коши
- частный интеграл.
б) Классификация: Дифференциальное уравнение второго порядка с постоянными коэффициентами, относится к первому виду со специальной правой части.
Нужно найти: уо.н. = уо.о. + уч.н., где уо.о. - общее решение однородного уравнения, уч.н. - частное решением неоднородного уравнения.
1) Найдем общее решение соответствующего однородного уравнения Перейдем к характеристическому уравнению, пользуясь методом Эйлера. Пусть , тогда получаем
Тогда общее решением однородного уравнения примет вид:
a) это дифференциальное уравнение первого порядка, разрешенной относительной производной. Также это уравнение с разделяющимися переменными. Переходя к определению дифференциала
- уравнение с разделёнными переменными
Интегрируя обе части уравнения, получаем
Получили общий интеграл.
Найдем решение задачи Коши
- частный интеграл.
б) Классификация: Дифференциальное уравнение второго порядка с постоянными коэффициентами, относится к первому виду со специальной правой части.
Нужно найти: уо.н. = уо.о. + уч.н., где уо.о. - общее решение однородного уравнения, уч.н. - частное решением неоднородного уравнения.
1) Найдем общее решение соответствующего однородного уравнения Перейдем к характеристическому уравнению, пользуясь методом Эйлера. Пусть , тогда получаем
Тогда общее решением однородного уравнения примет вид:
2)419-140=279
1)6*70=420
2)420-285=195
1)140-80=60
2)80*60=4800
3)4800+570=5370
1)80*20=1600
2)1600+769=2369
3)2369-684=1685
1)720:9=80
2)576+80=656
3)656-578=78