Расстояние между двумя точками — это длина отрезка, что соединяет эти точки.
Для точек М и А - это длина стороны АМ треугольника АСМ.
СМ - перпендикулярен плоскости АВСD, значит перпендикулярен любой прямой, проходящей через его основание С.⇒
∆ АСМ- прямоугольный.
АМ=√(CM²+AC²)
В данной трапеции АВ =24 (- меньшая боковая сторона),
CD=25.
ВD - биссектриса прямого угла.
∠АВD=45°, следовательно, ∠АDB =45°, ∆ АВD- равнобедренный и AD=AB=24
Опустим из С перпендикуляр СН на АD.
Отношение сторон ∆ СНD – из Пифагоровых троек, НD=7( проверьте).
Тогда ВС=24-7=17.
По т.Пифагора АС²=24²+17²=865
АМ=√(735+865)=√1600=40 (ед. длины)
Подробнее - на -
Пусть функция y = f(x) непрерывна на отрезке [a; b] и F(x) - одна из первообразных функции на этом отрезке, тогда справедлива формула Ньютона-Лейбница: формула.
Формулу Ньютона-Лейбница называют основной формулой интегрального исчисления.
Для доказательства формулы Ньютона-Лейбница нам потребуется понятие интеграла с переменным верхним пределом.
Если функция y = f(x) непрерывна на отрезке [a; b], то для аргумента формула интеграл вида формула является функцией верхнего предела. Обозначим эту функцию формула, причем эта функция непрерывная и справедливо равенство формула.
Действительно, запишем приращение функции формула, соответствующее приращению аргумента формула и воспользуемся пятым свойством определенного интеграла и следствием из десятого свойства:
формула
где формула.
Перепишем это равенство в виде формула. Если вспомнить определение производной функции и перейти к пределу при формула, то получим формула. То есть, формула - это одна из первообразных функции y = f(x) на отрезке [a; b]. Таким образом, множество всех первообразных F(x) можно записать как формула, где С – произвольная постоянная.
Вычислим F(a), используя первое свойство определенного интеграла: формула, следовательно, формула. Воспользуемся этим результатом при вычислении F(b): формула, то есть формула. Это равенство дает доказываемую формулу Ньютона-Лейбница формула.
Приращение функции принято обозначать как формула. Пользуясь этим обозначением, формула Ньютона-Лейбница примет вид формула.
Это же легко, удачи