Вирішимо методом підбору:
Нехай - х років, кожному з трійнят, тоді вік Богдана х-3.
Сума років 4-х братів дорівнює:
3х + (х-3)
4х-3
Очевидно, що загальна кількість років має бути парним числом кратним 4.
Підставами значення:
А: 53
4х-3 = 53
4х = 53 + 3 = 56
х = 14
х-3 = 14-3 = 11
Трійнятам по 14 років, Богдану - 11 років.
Б: 54
4х-3 = 54
4х = 54 + 3 = 57- не підходить, т.к 57 - непарне число
В: 56
4х-3 = 56
4х = 56 + 3 = 59-не підходить, тому що 59 - непарне число
Г: 59
4х-3 = 59
4х = 59 + 3 = 62- не підходить, тому що при розподілі 62:4=15,5 (число з залишком).
Д: 60
4х-3 = 60
4х = 60 + 3 = 63-не підходить, т.к 63 - непарне число.
Відповідь: А) 53
Пошаговое объяснение:
Расстояние между городами 600 км.
Направление движения: на встречу друг другу.
Выехали из двух городов одновременно.
Скорость грузового автомобиля на 16 км/ч больше автобуса.
Время движения 4 ч.
Определить скорость грузового автомобиля и автобуса.
Пусть скорость автобуса равна х км/ч, тогда скорость грузового автомобиля будет (х + 16) км/ч.
Расстояние, на которое сближаются грузовой автомобиль, и автобус за единицу времени, называют скоростью сближения vсб.
В случае движения грузового автомобиля и автобуса навстречу друг другу, скоростью сближения равно: vсб = v1 + v2
Если начальная расстояние S между грузовым автомобилем и автобусом равна 600 километров и они встретились через tвст = 4 ч, то S = vсб * tвст = (v1 + v2) * tвст
Составим уравнение:
(х + (х + 16)) * 4 = 600
(2х + 16) * 4 = 600
8х + 64 = 600
8х = 600 – 64
8х = 536
х = 536 : 8
х = 67
Скорость автобуса равно 67 км/ч.
Скорость грузового автомобиля равно 67 + 16 = 83 км/ч.
ответ: скорость автобуса — 67 км/ч; скорость грузовой машины — 83 км/ч.