Трехзначных чисел всего (100 - 999) = 900 штук. Из них хоть одну четверку содержат: 1) A B 4 (Здесь A ≠ 0 и 4, а B ≠ 4). А - 8 вариантов, B - 9 вариантов. n1 = 8 * 9 = 72 варианта. 2) C 4 D (C ≠ 0 и 4, а D ≠ 4) C - 8 Вариантов, D - 9 вариантов. n2 = 8*9 = 72 варианта. 3) 4 X Y (X и Y ≠ 4) X и Y - 9 вариантов. n3=9*9 = 81 вариант. 4) 4 A 4 (A ≠ 4) - 9 вариантов 5) A 4 4 (A ≠ 0 и 4) - 8 вариантов 6) 4 4 A - 10 вариантов По правилу суммы общее число вариантов: n = 72 + 72 + 81 + 9 + 8 + 10 = 252 варианта. p = 252 / 900 = 0,28
Нужно найти длины сторон AB = √((6-1)^2 + (1-2)^2) = √(5^2+(-1)^2) = √(25+1) = √26 BC = √((-1-6)^2 + (7-1)^2) = √((-7)^2+6^2) = √(49+36) = √85 AC = √((-1-1)^2 + (7-2)^2) = √((-2)^2+5^2) = √(4+25) = √29 Полупериметр p = (AB+BC+AC)/2 = (√26+√85+√29)/2 Площадь по формуле Герона S^2 = p(p-AB)(p-BC)(p-AC) = (√26+√85+√29)/2*(-√26+√85+√29)/2* *(√26-√85+√29)/2*(√26+√85-√29)/2 = = 1/16*(√26+√85+√29)(-√26+√85+√29)(√26-√85+√29)(√26+√85-√29) Дальше можно раскрыть скобки и получить какую-то сумму, но думаю, ничего красивого там не получится. И обратите внимание, эта формула - квадрат площади!
5(3-2y)-y=4
x=3-2y
15-10y-y=4
x=3-2y
-11y=4-15
x=3-2y
-11y=-11
y=1
x=3-2=1