Скорее всего , т.к мы ищем F(x) , то точки , что ты указала - это точки по х => просто подставляй значение в данную зависимость . 1) а) x=-1 F(x)= -1 +1 / -1 = 0 f(x)=0 b) x=1/2 F(X)=1/2 +1 / 1/2 f(x)= 3 c) x=10 F(x)=10 +1 / 10 f(x) =11/10= 1.1 2) a )x=-pi/4 F(x)=3cos( -pi/4- pi/4) F(x)= 3cos (-pi/2) cos(+-pi/2)=0 => F(x)=0 b) X=0 F(x) = 3cos(0 - pi/4) F(x)=3cos(-pi/4) cos(+-pi/4)=корень из 2/2 => F(x)=3 корня из 2 /2 с)x=pi F(x)=3cos(pi-pi/4) F(x)=3cos(3/4pi) f(x)= -3 корня из 2 /2
1) найти область определения функции: -∞ < x < +∞;2) выяснить, не является ли функция y=(x/4)-2x^2 чётной или нечётной:подставим переменную (-х) y(-х)=(-x/4)-2x^2 = -(y=(x/4)+2x^2) ≠ у(х) и ≠ -(у(х). Поэтому функция общего вида.3)пересечение с осями Ox и Oy; - с осью Ох при у = 0. (x/4)-2x^2 =0,25х - х² = х(0,25-2х) = 0. Имеем 2 точки пересечения с осью Ох: х = 0 и х = 0,25/2 = 0,125. 4) найти асимптоты графика функции - не имеет; 5) исследовать монотонность функции и найти ее экстремумы. График функции y=(x/4)-2x^2 это парабола ветвями вниз. Экстремумом является её максимум в вершине. Хо = -в/2а = -0,25/(2*(-2)) = 1/16 = 0,0625. Yo = (0,0625/4)-2*0,0625² = 0,007813. 6) найти точки перегиба, установить интервалы выпуклости и вогнутости графика функции; У параболы нет точки перегиба, заданная функция вся выпукла. Вторая производная равна -4, если f '' ( x ) < 0 для любого x ( a, b ), то функция f ( x ) является выпуклой на интервале ( a, b ). 7) исследовать знак функции. Положительные значения функция имеет на отрезке (0; 0,125), отрицательные: (-∞; 0)∪(0,125; +∞).
12+15=27яблок всего