Докажем это. Помним, что: an = a1 + d(n - 1) - формула n-го члена арифметической прогрессии. Из этой формулы видно, что любой член, кроме первого кратен d разности арифметической прогрессии) В то же время: d = (am - an) / (m - n) - разность нахождения арифметической прогрессии.
1) Находим d для нашей задачи: d = (29 - 5) / (3 - 1) d = 24/2 d = 12 2) Вычтем первый член нашей прогрессии из любого числа из предлагаемого диапазона, например, из первого: 2140 - 5 = 2135 3) Разделим 2135 на d=12 2135 : 12 = 177,9166666(7) Это значит, что 177 член прогрессии меньше, чем искомое число. 3) Умножим 12 на 178, чтобы найти ближайшее следующее число, которое кратно разности d=12 178 • 12 = 2136 4) Прибавим к найденному кратному 12 числу первый член прогрессии. 2136 + 5 = 2141 - вот число из предлагаемого диапазона, являющееся членом геометрической прогрессии.
Дробь: (5a + 2)/(8a + 1) Число а - натуральное, то есть 1, 2, 3, ... Попытаемся найти их общий делитель по алгоритму Евклида. 8a + 1 = (5a + 2)*1 + (3a - 1) При a = 1/3 остаток равен 0, но нам это не подходит. 5a + 2 = (3a - 1)*1 + (2a + 3) При а = -3/2 остаток равен 0, но нам это не подходит 3a - 1 = (2a + 3)*1 + (a - 4) При а = 4 остаток равен 0, и нам это подходит. Тогда дробь (5*4 + 2)/(8*4 + 1) = 22/33 = 2/3. Сократили на 11. Пусть a =/= 4 2a + 3 = (a - 4)*1 + (a + 7) При а = -7 остаток равен 0, но нам это не подходит. a - 4 = (a + 7)*1 - 11 Этот остаток уже никогда не будет равен 0. ответ: единственный случай - это а = 4, сокращаем на 11.
302-6,988=295,012 295,01