М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
бабушка19773
бабушка19773
14.03.2021 00:54 •  Математика

Составьте все четырехзначные числа записанные с цифр 0257 так чтобы каждая цифра встречается только один раз и чтобы число делилось на 10 на 5 на 2

👇
Ответ:
PhotoBelka
PhotoBelka
14.03.2021
2075
2570
2750
2705
5270
5720
7025
7205
7250
7520
4,4(75 оценок)
Открыть все ответы
Ответ:
1) Произвольное комплексное число z в алгебраической форме:
z = a + b*i
Оно же в тригонометрической форме:
z = r*(cos Ф + i*sin Ф)
Здесь r = √(a^2 + b^2); Ф = arctg(b/a)

2) z = 1 - i
a = 1; b = -1; r = √(1^2 + (-1)^2) = √2; Ф = arctg(-1/1) = -pi/4
z = √2*(cos(-pi/4) + i*sin(-pi/4))

3) z= \frac{2 \sqrt{2} }{1+i}
Сначала представим z в обычном алгебраическом виде:
Для этого умножим числитель и знаменатель на комплексно-сопряженное.
z= \frac{2 \sqrt{2}(1-i) }{(1+i)(1-i)} = \frac{2 \sqrt{2}(1-i)}{1-i^2} = \frac{2 \sqrt{2}(1-i)}{2} =\sqrt{2}(1-i)=\sqrt{2}-i\sqrt{2}
Теперь переведем его в тригонометрическую форму
z=\sqrt{2}-i\sqrt{2}=2( \frac{1}{ \sqrt{2} } -i* \frac{1}{ \sqrt{2} } )=2(cos(- \frac{ \pi }{4})+i*sin(- \frac{ \pi }{4} ) )
Здесь нам номер 2), в котором мы уже представляли 1 - i.
По формуле Муавра для степени и корня комплексного числа:
z^n = r^n*(cos(n*Ф) + i*sin(n*Ф))
z^3=2^3(cos(- \frac{3 \pi }{4} )+i*sin(- \frac{3 \pi }{4} ))=8(- \frac{ \sqrt{2} }{2} -i \frac{ \sqrt{2} }{2} )=-4 \sqrt{2}-4i \sqrt{2}
4,7(23 оценок)
Ответ:
janneellz
janneellz
14.03.2021
Вместо заданных чисел 1,2,...,1907 можно рассматривать их остатки от деления на три: 1,2,0,1,2,0,...,0,1,2. Нуль нельзя выбирать, иначе в пятерке, где нуль крайний, найдётся четвёрка с суммой, кратной трём. Выбранная последовательность единиц и двоек периодична с периодом, равным пяти. Короткий перебор показывает, что в периоде должно быть ровно четыре одинаковых числа. Поскольку в исходном наборе единиц и двоек поровну, то искомым набором может быть такой2,1,1,1,1,2,1,1,1,1,...,2,1,1,1,1,2.В нём 636 единиц и 145 двоек.
итого 636+145=771 числа.
4,4(74 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ