Итак, предположим что за каждым домиков в начале числится 9 саженцев, а потом 5 саженцев, выходит, что от каждого домика мы забрали по 4 деревца. И вышло так, что получившемся числом саженцев, которые мы отняли, можно занять те домики за которыми саженцы числятся, но которые возле себя саженцев не имеют (вспомним, что не хватило 100 саженцев), а еще и останется 20. То есть мы,отняли от домиков всего 120 деревьев, от каждого домика по 4 дерева, получается : 120/4=30 домиков Мы знаем, что если дать 30 домикам 5 деревьев, то останется 20. 30*5=150 саженцев у домиков 150+20=170 саженцев всего ответ: 170 саженцев и 30 домов
Предположим, что у нас есть функция (график этой функции – это парабола) и необходимо построить график функции . Вычислим значения некоторых точек для графиков этих функций.
Из таблиц видно, что одним и тем же значениям аргумента соответствуют противоположные значения функций. Графически это означает, что графики расположены симметрично относительно оси абсцисс. То есть заданная парабола () зеркально отобразится относительно оси (см. Рис. 1).
Рис. 1. Графики функций и
Таким образом, если у нас есть произвольный график , то для построения графика необходимо график симметрично отразить относительно оси (см. Рис. 2). Такое преобразование называется преобразованием симметрии относительно оси .
Рис. 2. Преобразование симметрии относительно оси
Преобразование симметрии – зеркальное отражение относительно прямой. График получается из графика функции преобразованием симметрии относительно оси .
На рисунке 3 показаны примеры симметрии относительно оси .
Рис. 3. Симметрия относительно оси Ox
15:5 = 3 (одна часть)
2*3 = 6
3*3 = 9
6:9
1/2 + 1/3 = 3/6 + 2/6 = 5/6 (частей всего)
100:5/6 = 100 *6:5 = 120 одна часть
120 * 1/2 = 60
120*1/3 = 40
60:40