М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Romchik1111111
Romchik1111111
21.04.2020 18:40 •  Математика

На одной полке стояло х книг,а на второй-в 4 раза больше.когда со второй полки переставили на первую 21 книгу,то книг на полках стало поровну.запишите выражения для следующих величин: 1.число книг на второй полке первоначально 2.число книг на второй полке после того,как оттуда убрали 21 книгу 3.число книг на первой полке после того ,как туда поставили 21 книгу найдите равные величины и составьте уравнение- модель данной ситуации.

👇
Ответ:
girb13
girb13
21.04.2020
Х+21=4х-21
х+21-4х+21=0
-3х+42=0
Х=14 было на первой
14•4 = 56 было изначально на второй
56-21=35 стало на второй
4,4(4 оценок)
Открыть все ответы
Ответ:
mot1475
mot1475
21.04.2020
1) Смотри рисунок. В тетрадном листе в клетку 1 см = 2 клеточки, то есть, чертим координатный луч, ставим точку 0, от нее 2 клетки вправо, цифра 1 - это единичный отрезок. Осталось отметить на нем данные точки.

2) В(5)

3) М (10)

4) первый случай: точка В лежит слева от точки С, тогда её координата = 4-2=2. В(2)
второй случай: точка В лежит справа от точки С, тогда её координата = 4+2=6. В(6)

5) Левее лежит та точка, координата которой меньше, то есть точка F(11) лежит левее точки E(19).

6) Чтобы вычислить координату середины отрезка, нужно сложить координаты крайних точек, результат поделить на 2:
(4 + 10)/2 = 7
ответ: S(7)
Решить 1)начертить координатном луч единичный отрезок равен 1 см и обозначить на нём точки соответст
4,4(24 оценок)
Ответ:
Тппсхп
Тппсхп
21.04.2020
1. a=2,b=3,c=6
a) D=D=\sqrt{ a^{2} + b^{2} + c^{2} } = \sqrt{ 2^{2} + 3^{2} + 6^{2}}=\sqrt{ 4 + 9 + 36}=\sqrt{49}=7 - Диагональ параллелепипеда.
б) Наименьшая грань образована меньшими ребрами: \sqrt{ a^{2} + b^{2} } = \sqrt{ 2^{2} + 3^{2} } = \sqrt{4+9} = \sqrt{13} - Её диагональ.
в) Наибольшая грань образована большими ребрами: 3*6=18 - Её площадь.
г) Наименьшая грань образована меньшими ребрами: 2*3=6 - Её площадь.
д) Площадь поверхности - сумма площадей граней: (2*3+2*6+3*6) * 2 = (6+12+18)*2=36*2=72.

2. d-диагональ призмы, a - угол между d и основанием.
а) Высота призмы равна проекции её диагонали на боковое ребро: h=d*sin(a)
б) Диагональ основания призмы равна проекции её диагонали на основание: f=d*cos(a)
в) Поскольку основанием призмы является правильный шестиугольник, все углы равны 120 градусам. Если провести диагональ f, она разделит углы пополам, то есть по 60 градусов. Если провести 3 таких диагонали, получим 6 равносторонних треугольников со стороной равной длине ребра и f будет равна удвоенной стороне основания, т.е. g=f/2
г) Поскольку основанием призмы является правильный шестиугольник, его площадь будет равна \frac{3\sqrt{3}}{2} g^{2}, где g - сторона основания.
д) Наибольшее диагональное сечение призмы будет опираться на большую диагональ основания f. Поскольку призма является правильной, сечение будет иметь форму прямоугольника. Её площадь вычисляется по формуле: f*h=dsin(a)*dcos(a)=d^2*sin(2a)/2
е) Площадь боковой поверхности правильной призмы равна периметру основания на высоту: 6*g*h = 6f/2*dsin(a)=dsin(a)*dcos(a)/2=3d^2*sin(2a)/2.

3.
а) Большая диагональ параллелепипеда образует с диагональю основания и высотой прямоугольный треугольник. Диагональ параллелепипеда является в этом треугольнике гипотенузой. \sqrt{17^{2}-8^{2}} = \sqrt{289-64}=\sqrt{225}=15 - Большая диагональ основания
б) Аналогично, меньшая диагональ основания будет равна \sqrt{10^{2}-8^{2}} = \sqrt{100-64}=\sqrt{36}=6.
в) Поскольку в основании лежит ромб, его диагонали пересекаются под прямым углом и в точке пересечения делятся пополам. Сторона основания параллелепипеда в этом треугольнике является гипотенузой. \sqrt{15^2+6^2} = \sqrt{225+64}=\sqrt{289}=17 - длина стороны основания.
г) Поскольку основание является ромбом, площадь его основания равна половине произведения диагоналей: 6*15/2=45
д) Площадь боковой поверхности равна произведению периметра основания на высоту: 17*4*8=544.
е) Большая диагональ параллелепипеда образует прямоугольник со сторонами 8,15,17. Нужно найти угол между диагональю параллелепипеда и основанием, то есть сторонами треугольника равными 15 и 17. В прямоугольном треугольнике косинус угла равен отношению прилежащего катета к гипотенузе.
cos(a)=15/17.
a=28 градусов.

4.
а) Поскольку в основании призмы лежит прямоугольный треугольник, и нам известны два его катета, гипотенуза будет равна \sqrt{12^2+5^2} = \sqrt{144+25} =\sqrt{169}=13
б) Поскольку в основании призмы лежит прямоугольный треугольник, площадь призмы будет  равна площади прямоугольного треугольника, то есть половине произведения катетов: 12*5/2=30.
в) Площадь боковой поверхности призмы равна произведению периметра основания на высоту: (5+12+13)*10=300.
г) Площадь полной поверхности призмы равна сумме площади боковой поверхности и двух площадей основания: 300+2*30=360.
д) Сечение, проведенное через боковое ребро и середину гипотенузы, будет опираться на медиану основания, проведенную к гипотенузе.
Рассмотрим треугольник, сторонами которого является меньший катет основания, медиана и половина гипотенузы. 2 стороны равны 5 и 6.5.
Для нахождения 3 стороны воспользуемся формулой a^2= \sqrt{b^2+c^2-2bc * cos\alpha }
Косинус угла a равен 5\13
Подставим:
a^2= \sqrt{5^2+6.5^2-2*5*6.5 * 5/13 } = \sqrt{25+42.25-25 } = \sqrt{42.25}=6.5.
Площадь сечения будет равна 6.5*10=65.
е) Наибольшая боковая грань призмы опирается на гипотенузу прямоугольного треугольника, лежащего основания. Её диагональ равна \sqrt{13^2+10^2} = \sqrt{169+100}= \sqrt{269} = 16.4
4,5(93 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ